zoukankan      html  css  js  c++  java
  • hearbeart

    Heartbeat(Linux-HA工程的一个组件)

    Heartbeat 项目是 Linux-HA 工程的一个组成部分,它实现了一个高可用集群系统。心跳服务和集群通信高可用集群的两个关键组件,在 Heartbeat 项目里,由 heartbeat 模块实现了这两个功能。下面描述了 heartbeat 模块的可靠消息通信机制,并对其实现原理做了一些介绍。

    简介

    heartbeat heartbeat
    Heartbeat是Linux-HA工程的一个组件,自1999年开始到现在,发布了众多版本,是目前开源Linux-HA项目最成功的一个例子,在行业内得到了广泛的应用,这里分析的是2007年1月18日发布的版本2.0.8。
    随着Linux在关键行业应用的逐渐增多,它必将提供一些原来由IBM和SUN这样的大型商业公司所提供的服务,这些商业公司所提供的服务都有一个关键特性,就是高可用集群
     

    原理

    heartbeat (Linux-HA)的工作原理:heartbeat最核心的包括两个部分,心跳监测部分和资源接管部分,心跳监测可以通过网络链路和串口进行,而且支持 冗 余链路,它们之间相互发送报文来告诉对方自己当前的状态,如果在指定的时间内未收到对方发送的报文,那么就认为对方失效,这时需启动资源接管模块来接管运 行在对方主机上的资源或者服务。

    高可用集群

    高可用集群是 指一组通过硬件和软件连接起来的独立计算机,它们在用户面前表现为一个单一系统,在这样的一组计算机系统内部的一个或者多个节点停止工作,服务会从故障节 点切换到正常工作的节点上运行,不会引起服务中断。从这个定义可以看出,集群必须检测节点和服务何时失效,何时恢复为可用。这个任务通常由一组被称为“心 跳”的代码完成。在Linux-HA里这个功能由一个叫做heartbeat的程序完成。

    消息通信模型

    Heartbeat包括以下几个组件:
    heartbeat – 节点间通信校验模块
    CRM - 集群资源管理模块
    CCM - 维护集群成员的一致性
    LRM - 本地资源管理模块
    StonithDaemon - 提供节点重启服务
    logd - 非阻塞的日志记录
    apphbd - 提供应用程序级的看门狗计时器
    Recovery Manager - 应用故障恢复
    底层结构–包括插件接口、进程间通信
    CTS – 集群测试系统,集群压力测试
    这里主要分析的是Heartbeat的集群通信机制,所以这里主要关注的是heartbeat模块。
    heartbeat模块由以下几个进程构成:
    master进程(masterprocess)
    FIFO子进程(fifochild)
    read子进程(readchild)
    write子进程(writechild)
    在heartbeat里每一条通信通道对应于一个write子进程和一个read子进程,假设n是通信通道数,p为heartbeat模块的进程数,则p、n有以下关系:
    p=2*n+2
    在heartbeat里,master进程把自己的数据或者是客户端发送来的数据,通过IPC发送到write子进程,write子进程把数据发送到网络;同时read子进程从网络读取数据,通过IPC发送到master进程,由master进程处理或者由master进程转发给其客户端处理。
    Heartbeat启动的时候,由master进程来启动FIFO子进程、write子进程和read子进程,最后再启动client进程。

    可靠消息通信

    Heartbeat通过插件技术实现了集群间的串口多播、广播和组播通信,在配置的时候可以根据通信媒介选择采用的通信协议,heartbeat启动的时候检查这些媒介是否存在,如果存在则加载相应的通信模块。这样开发人员可以很方便地添加新的通信模块,比如添加红外线通信模块。
    对于高可用集群系统,如果集群间的通信不可靠,那么很明显集群本身也不可靠。Heartbeat采用UDP协议和串口进行通信,它们本身是不可靠的,可靠性必须由上层应用来提供。那么怎样保证消息传递的可靠性呢?
    Heartbeat通过冗余通信通道和消息重传机制来保证通信的可靠性。Heartbeat检测主通信链路工作状态的同时也检测备用通信链路状态,并把这一状态报告给系统管理员,这样可以大大减少因为多重失效引起的集群故障不能恢复。例如,某个工作人员不小心拨下了一个备份通信链路,一两个月以后主通信链路也失效了,系统就不能再进行通信了。通过报告备份通信链路的工作状态和主通信链路的状态,可以完全避免这种情况。因为这样在主通信链路失效以前,就可以检测到备份工作链路失效,从而在主通信链路失效前修复备份通信链路。
    Heartbeat通过实现不同的通信子系统,从而避免了某一通信子系统失效而引起的通信失效。最典型的就是采用以太网和串口相结合的通信方式。这被认为是当前的最好实践,有几个理由可以使我们选择采用串口通信:
    (1)IP通信子系统的失效不太可能影响到串口子系统。
    (2)串口不需要复杂的外部设备和电源。
    (3)串口设备简单,在实践中非常可靠。
    (4)串口可以非常容易地专用于集群通信
    (5)串口的直连线因为偶然性掉线事件很少。
    不管是采用串口还是以太网IP协议进行通信,heartbeat都实现了一套消息重传协议,保证消息包的可靠传递。实现消息包重传有两种协议,一种是发送者发起,另一种是接收者发起。
    对于发送者发起协议,一般情况下接收者会发送一个消息包的确认。发送者维护一个计时器,并在计时器到时的时候重传那些还没有收到确认的消息包。这种方法容易引起发送者溢出,因为每一台机器的每一个消息包都需要确认,使得要发送的消息包成倍增长。这种现像被称为发送者(或者ACK内爆(implosion)。
    对于接收者发起协议,采用这种协议通信双方的接收者通过序列号负责进行错 误检测。当检测到消息包丢失时,接收者请求发送者重传消息包。采用这种方法,如果消息包没有被送达任何一个接收者,那么发送者容易因NACK溢出,因为每 个接收者都会向发送者发送一个重传请求,这会引起发送者的负载过高。这种现像被称为NACK内爆(implosion)。
    Heartbeat实现的是接收者发起协议的一个变种,它采用计时器来限制过多的重传,在计时器时间内限制接收者请求重传消息包的次数,这样发送者重传消息包的次数也被相应的限制了,从而严格的限制了NACK内爆。

    可靠消息通信的实现

    一般集群通信有两类消息包,一类是心跳消息包,这类消息包通告集群内节点的存活情况;另一类是控制消息包,这类消息包负责集群的节点和资源管理。heartbeat把心跳消息包看成是控制消息包的一个特例,采用相同的通信通道进行发送,这使得协议的实现简单化,而且很有效,并把相应的代码限制在几百行之内。
    在heartbeat里,一切流向网络的数据都由master进程发送到 write子进程进行发送。master进程调用send_cluster_msg()函数把消息发送到所有的write子进程。下面通过一些代码片段看 看heartbeat是怎么发送消息的。在介绍代码之前先介绍相关的重要数据结构
    Heartbeat的消息包数据结构structha_msg{intnfields;/*消息包数据域的个数*/intnalloc;/*己分配的内存块个数*/char**names;/*消息包数据域的名称*/size_t*nlens;/*各个数据域称的长度*/void**values;/*与数据域名称对应的数据值*/size_t*vlens;/*各个数据域对应的数据值的长度*/int*types;/*消息包的类型*/};
    Heartbeat的历史消息队列structmsg_xmit_hist{structha_msg*msgq[MAXMSGHIST];/* 历史消息队列*/seqno_tseqnos[MAXMSGHIST];/*历史消息序列号* /longclock_tlastrexmit[MAXMSGHIST];/*上一次重传的时间*/intlastmsg;/*上一次重传到的消息序列 号*/seqno_thiseq;/*最大消息序列号*/seqno_tlowseq;/*最小消息序列号*/seqno_tackseq;/*确认了的 消息序列号*/structnode_info*lowest_acknode;/*确认的节点*/};
    代码所属文件heartbeat/heartbeat.c
    intsend_cluster_msg(structha_msg*msg){...pid_tourpid=getpid();...
    if(ourpid==processes[0]){/*来自master进程的消息*//*添加控制信息,包括源节点名,源节点全局标识符, 序列号,代数,时间等*/if((msg=add_control_msg_fields(msg))!=NULL){/*可靠的多播消息包传递* /rc=process_outbound_packet(&msghist,msg);}}else{/*来自client进程的消息* /intffd=-1;char*smsg=NULL;
    ...
    /*发送到FIFO进程*/
    if((smsg=msg2wirefmt_noac(msg,&len))==NULL){...}elseif((ffd=open(FIFONAME,O_WRONLY|O_APPEND))nodename)==0);
    /*把消息转换成字符串*/smsg=msg2wirefmt(msg,&len);
    ...
    if(cseq!=NULL){/*存放到历史消息队列里,通过序列号记录,如果需要,则进行重传*/add2_xmit_hist(hist,msg,seqno);}
    ...
    /*通过write子进程发送到所有的网络接口上*/send_to_all_media(smsg,len);
    ...
    returnHA_OK;}
    add2_xmit_hist()函数把发送的消息发到一个历史消息队列里去,队列的最大长度为200。如果接收者请求重传消息,发送者通过序列号在该队列里查找要重传的消息,如果找到则进行重传。下面是相关代码。
    staticvoidadd2_xmit_hist(structmsg_xmit_hist*hist,structha_msg*msg,seqno_tseq){intslot;structha_msg*slotmsg;
    ...
    /*查找队列里消息存放的位置*/slot=hist->lastmsg+1;if(slot>=MAXMSGHIST){/*到达队尾,从头开始。在这里实现循环队列*/slot=0;}
    hist->hiseq=seq;slotmsg=hist->msgq[slot];
    /*删除队列中找到的位置上的旧消息* /if(slotmsg!=NULL){hist->lowseq=hist->seqnos[slot];hist->msgq[slot]=NULL;if(!ha_is_allocated(slotmsg)){...}else{ha_msg_del(slotmsg);}}
    hist->msgq[slot]=msg;hist->seqnos[slot]=seq;hist->lastrexmit[slot]=0L;hist->lastmsg=slot;
    if(enable_flow_control&&live_node_count>1&&(hist->hiseq–hist->lowseq)>((MAXMSGHIST*3)/4)){/*消息队列长度大于告警长度,记录日志*/...}if(enable_flow_control&&hist->hiseq–hist->ackseq>FLOWCONTROL_LIMIT){/*消息队列的长度大于流控限 制长度*/if(live_node_counthiseq–(FLOWCONTROL_LIMIT– 1));all_clients_resume();}else{/*client进程发送消息过快,暂停所有的client进程* /all_clients_pause();hist_display(hist);}}
    }
    当发送者收到接收者的重传请求后,通过回调函数HBDoMsg_T_REXMIT()函数调用process_rexmit()函数进行消息重传。
    #defineMAX_REXMIT_BATCH50/*每次最多重传的消息包数*/
    staticvoidprocess_rexmit(structmsg_xmit_hist*hist,structha_msg*msg){constchar*cfseq;constchar*clseq;seqno_tfseq=0;seqno_tlseq=0;seqno_tthisseq;intfirstslot=hist->lastmsg–1;intrexmit_pkt_count=0;constchar*fromnodename=ha_msg_value(msg,F_ORIG);structnode_info*fromnode=NULL;
    ...
    /*取得要重传的消息包的起始序列号* /if((cfseq=ha_msg_value(msg,F_FIRSTSEQ))==NULL|| (clseq=ha_msg_value(msg,F_LASTSEQ))==NULL||(fseq=atoi(cfseq))lseq){/*无效序 列号,记录日志信息*/...}
    ...
    /*重传丢失的消息包*/for(thisseq=fseq;thisseqtrack.ackseq){/*该消息包已经被确认过,可以忽略掉*/continue;}if(thisseqlowseq){/*序列号小于消息队列里 的最小序列号,该消息己不存在于历史消息队列中*//*告知对方,不重传该消息* /nak_rexmit(hist,thisseq,fromnodename,“seqnotoolow”);continue;}if(thisseq>hist->hiseq) {/*序列号大于消息队列中最大序列号*/...continue;}
    for(msgslot=firstslot;!foundit&&msgslot!=(firstslot+1);--msgslot){char*smsg;longclock_tnow=time_longclock();longclock_tlast_rexmit;size_tlen;
    ...
    /*重传上一次重传剩下的消息包*/last_rexmit=hist->lastrexmit[msgslot];
    if(cmp_longclock(last_rexmit,zero_longclock)!=0&&longclockto_ms(sub_longclock(now,last_rexmit))<(ACCEPT_REXMIT_REQ_MS)){gotoNextReXmit;}
    /*一次不能发送太多数据包,如果数据包太多的话,可能会引起串口溢出*/++rexm
     
    来源百度百科
     
  • 相关阅读:
    ubuntu16.04搭建jdk1.8运行环境
    window如何查看被占用端口的使用情况
    Windows下80端口被进程System占用的解决方法
    java.lang.OutOfMemoryError:PermGen space tomcat7 内存溢出
    GitLab服务器IP地址修改
    Ubuntu输入ifconfig找不到IP地址,只有lo问题
    git命令如何删除文件或文件夹
    数组转List
    Java NIO 缓冲区
    MySQL数据类型-整型
  • 原文地址:https://www.cnblogs.com/losbyday/p/5859870.html
Copyright © 2011-2022 走看看