zoukankan      html  css  js  c++  java
  • c++搜索二叉树的实现

      1 #pragma once
      2 #include<Windows.h>
      3 #include<stdio.h>
      4 
      5 #define SUCCESS                         1 // 执行成功                        
      6 #define ERROR             -1 // 执行失败                                 
      7 
      8 template<class T>
      9 class TreeNode {
     10 public:
     11     T element;                    //当前节点存储的数据            
     12     TreeNode<T>* pLeft;                    //指向左子节点的指针            
     13     TreeNode<T>* pRight;                    //指向右子节点的指针            
     14     TreeNode<T>* pParent;                    //指向父结点的指针            
     15 
     16 
     17     TreeNode(T& ele) {
     18         //初始化Node节点                            
     19         memset(&element, 0, sizeof(TreeNode));
     20         //为元素赋值                            
     21         memcpy(&element, &ele, sizeof(T));
     22         pLeft = pRight = pParent = NULL;
     23     }
     24     //重载== 比较两结点是否相等                                
     25     bool operator==(TreeNode<T>* node) {
     26         return node->element == element ? true : false;
     27     }
     28 };
     29 
     30 template<class T>
     31 class BSortTree {
     32 public:
     33     BSortTree();                        //构造函数        
     34     ~BSortTree();                        //析构函数        
     35 public:                            //判断树是否为空        
     36     bool IsEmpty();                        //新增节点        
     37     DWORD Insert(T element);                        //删除节点        
     38     void Delete(T element);
     39     TreeNode<T>* Search(T element);    
     40     TreeNode<T>* GetRoot();    //查找节点        
     41     void InOrderTraverse(TreeNode<T>* pNode);                        //中序遍历        
     42     void PreOrderTraverse(TreeNode<T>* pNode);                        //前序遍历        
     43     void PostOrderTraverse(TreeNode<T>* pNode);                        //后序遍历        
     44 private:
     45     TreeNode<T>* GetMaxNode(TreeNode<T>* pNode);                        //获取以pNode为根的最大节点        
     46     TreeNode<T>* GetMinNode(TreeNode<T>* pNode);                        //获取以pNode为根的最小节点        
     47     TreeNode<T>* SearchNode(TreeNode<T>* pNode, T element);                        //获取以pNode为根的最小节点        
     48     DWORD InsertNode(T element, TreeNode<T>* pNode);                        //新增节点        
     49     DWORD DeleteNode(T element, TreeNode<T>* pNode);                        //删除节点        
     50     void Clear(TreeNode<T>* pNode);                        //清空所有节点        
     51 private:
     52     TreeNode<T>* m_pRoot;                        //根结点指针        
     53     int size;                        //树中元素总个数        
     54 };
     55 
     56 template<class T>
     57 void BSortTree<T>::InOrderTraverse(TreeNode<T>* pNode)
     58 {
     59 
     60     //中序遍历所有怪物,列出怪的名字
     61     if (pNode == NULL)
     62     {
     63         return;
     64     }
     65 
     66 
     67     InOrderTraverse(pNode->pLeft);
     68     printf("%d
    ", pNode->element);
     69     InOrderTraverse(pNode->pRight);
     70 
     71     return;
     72 
     73 }
     74 
     75 template<class T>
     76 TreeNode<T>* BSortTree<T>::GetRoot()
     77 {
     78     return m_pRoot;
     79 }
     80 
     81 template<class T>
     82 BSortTree<T>::BSortTree()
     83 {
     84     m_pRoot = NULL;
     85     size = 0;
     86 }
     87 template<class T>
     88 BSortTree<T>::~BSortTree() {
     89 
     90     Clear(m_pRoot);
     91 }
     92 template<class T>
     93 DWORD BSortTree<T>::Insert(T element)
     94 {
     95     //如果根节点为空                                
     96     if (!m_pRoot)
     97     {
     98         m_pRoot = new TreeNode<T>(element);
     99         size++;
    100         return SUCCESS;
    101     }
    102     //如果根节点不为空                                
    103     return InsertNode(element, m_pRoot);
    104 }
    105 template<class T>
    106 DWORD BSortTree<T>::InsertNode(T element, TreeNode<T>* pNode)
    107 {
    108     //将元素封装到节点中                                
    109     TreeNode<T>* pNewNode = new TreeNode<T>(element);
    110     //如果element == 当前节点 直接返回                                
    111     if (element == pNode->element)
    112     {
    113         return SUCCESS;
    114     }
    115     //如果pNode的左子节点为NULL 并且element < 当前节点                                
    116     if (pNode->pLeft == NULL && element < pNode->element)
    117     {
    118         pNode->pLeft = pNewNode;
    119         pNewNode->pParent = pNode;
    120         size++;
    121         return SUCCESS;
    122     }
    123     //如果pNode的右子节点为NULL 并且element > 当前节点                                
    124     if (pNode->pRight == NULL && element > pNode->element) {
    125         pNode->pRight = pNewNode;
    126         pNewNode->pParent = pNode;
    127         size++;
    128         return SUCCESS;
    129     }
    130     //如果element<当前节点 且当前节点的左子树不为空                                
    131     if (element < pNode->element)
    132     {
    133         InsertNode(element, pNode->pLeft);
    134     }
    135     else
    136     {
    137         InsertNode(element, pNode->pRight);
    138     }
    139     return SUCCESS;
    140 }
    141 
    142 template<class T>
    143 void BSortTree<T>::Clear(TreeNode<T>* pNode)
    144 {
    145     if (pNode != NULL)
    146     {
    147         Clear(pNode->pLeft);
    148         Clear(pNode->pRight);
    149         delete pNode;
    150         pNode = NULL;
    151     }
    152 }
    153 
    154 template<class T>
    155 bool BSortTree<T>::IsEmpty()
    156 {
    157     return size == 0 ? true : false;
    158 }
    159 
    160 template<class T>
    161 TreeNode<T>* BSortTree<T>::Search(T element)
    162 {
    163     return SearchNode(m_pRoot, element);
    164 }
    165 template<class T>
    166 TreeNode<T>* BSortTree<T>::SearchNode(TreeNode<T>* pNode, T element)
    167 {
    168     if (pNode == NULL)                    //如果节点为NULL            
    169     {
    170         return NULL;
    171     }
    172     else if (element == pNode->element)                    //如果相等            
    173     {
    174         return pNode;
    175     }                    //如果比节点的元素小 向左找            
    176     else if (element < pNode->element)
    177     {
    178         return SearchNode(pNode->pLeft, element);
    179     }
    180     else                    //如果比节点的元素大 向右找            
    181     {
    182         return SearchNode(pNode->pRight, element);
    183     }
    184 }
    185 
    186 template<class T>
    187 void BSortTree<T>::Delete(T element)
    188 {
    189     DeleteNode(element, this->m_pRoot);
    190 }
    191 
    192 template<class T>
    193 DWORD BSortTree<T>::DeleteNode(T element, TreeNode<T>* pNode)
    194 {
    195     //删除节点
    196     
    197     if (element == pNode->element)
    198     {
    199         printf("找到了
    ");
    200         if (pNode->pLeft == NULL && pNode->pRight==NULL)
    201         {
    202             if (pNode->element < pNode->pParent->element)
    203             {
    204                 pNode->pParent->pLeft = NULL;
    205             }
    206             else
    207             {
    208                 pNode->pParent->pRight = NULL;
    209             }
    210             delete pNode;
    211             pNode = NULL;
    212             return SUCCESS;
    213         }
    214         if (pNode->pLeft==NULL && pNode->element < pNode->pParent->element)
    215         {
    216             pNode->pParent->pLeft = pNode->pRight;
    217             delete pNode;
    218             pNode = NULL;
    219             return SUCCESS;
    220         }
    221         if (pNode->pLeft == NULL && pNode->element > pNode->pParent->element)
    222         {
    223             pNode->pParent->pRight = pNode->pRight;
    224             delete pNode;
    225             pNode = NULL;
    226             return SUCCESS;
    227         }
    228         if (pNode->pRight == NULL && pNode->element < pNode->pParent->element)
    229         {
    230             pNode->pParent->pLeft = pNode->pLeft;
    231             delete pNode;
    232             pNode = NULL;
    233             return SUCCESS;
    234         }
    235         if (pNode->pRight == NULL && pNode->element > pNode->pParent->element)
    236         {
    237             pNode->pParent->pRight = pNode->pLeft;
    238             delete pNode;
    239             pNode = NULL;
    240             return SUCCESS;
    241         }
    242         if (pNode->pParent == NULL)
    243         {
    244             TreeNode<T>* Temp = pNode->pRight;
    245             while (Temp->pLeft != NULL)
    246             {
    247                 Temp = Temp->pLeft;
    248             }
    249             Temp->pLeft = pNode->pLeft->pRight;
    250             pNode->pLeft->pRight = pNode->pRight;
    251             pNode->pLeft->pParent = pNode->pParent;
    252             this->m_pRoot = pNode->pLeft;
    253             delete pNode;
    254             pNode = NULL;
    255             Temp = NULL;
    256             return SUCCESS;
    257             return SUCCESS;
    258         }
    259         else
    260         {
    261             TreeNode<T>* Temp = pNode->pRight;
    262             pNode->pParent->pLeft = pNode->pLeft;
    263             while (Temp->pLeft != NULL)
    264             {
    265                 Temp = Temp->pLeft;
    266             }
    267             Temp->pLeft = pNode->pLeft->pRight;
    268             pNode->pLeft->pRight = pNode->pRight;
    269             pNode->pLeft->pParent = pNode->pParent;
    270             delete pNode;
    271             pNode = NULL;
    272             Temp = NULL;
    273             return SUCCESS;
    274         }
    275         return SUCCESS;
    276     }
    277     
    278 
    279     if (element < pNode->element)
    280     {
    281         DeleteNode(element, pNode->pLeft);
    282     }
    283     else
    284     {
    285         DeleteNode(element, pNode->pRight);
    286     }
    287 
    288     return SUCCESS;
    289 }
  • 相关阅读:
    Python前戏
    Python概述
    博科Brocade 300光纤交换机配置zone教程
    pygame---制作一只会转弯的小乌龟
    UNIX故障--sun m4000服务器故障硬盘更换案例
    redhat系统升级openssh到7.5
    SAN---第二网的概念
    博科交换机常用操作命令
    博科brocade光纤交换机alias-zone的划分-->实操案例
    python常用内置函数
  • 原文地址:https://www.cnblogs.com/louzi/p/11261245.html
Copyright © 2011-2022 走看看