zoukankan      html  css  js  c++  java
  • hdu-1159 Common Subsequence

    题目链接:

    http://acm.hdu.edu.cn/showproblem.php?pid=1159

    题目类型:

    最大公共子串

    题意概括:

    给出两个字符串,求这两个字符串的最大公共子串

    解题思路:

    通过一个二维字符串,将两个字符串进行比较,遇到相同则将左上角的值+1赋予当前位置的值,如果不相同,则将左边和上面的值的最大值赋予当前值,右下角的值即最大公共子串的长度。

    题目:

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 38605    Accepted Submission(s): 17735


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab
    programming contest
    abcd mnp
     
    Sample Output
    4
    2
    0
     
    # include <stdio.h>
    # include <string.h>
    int dp[1010][1010];
    int maxx(int a,int b)
    {
        if(a>b)
            return a;
        else
            return b;
    }
    
    
    int main ()
    {
        int i,j,l1,l2;
        
        char a[1010],b[1010];
        
        while(scanf("%s%s",a+1,b+1)!=EOF)
        {
            int l1=strlen(a);
            int l2=strlen(b);
            memset(dp,0,sizeof(dp));
            for(i=0;i<l1;i++)
            {
                for(j=0;j<l2;j++)
                {
                    if(i==0 || j==0)
                        dp[i][j]=0;
                    else if(a[i]==b[j])
                        dp[i][j]=dp[i-1][j-1]+1;
                    else if(a[i]!=b[j])
                        dp[i][j]=maxx(dp[i-1][j],dp[i][j-1]);
                }
            }
            printf("%d
    ",dp[l1-1][l2-1]);
        }
    }
  • 相关阅读:
    linux安装kafka教程
    linux 系统java相关部署
    redies学习总结
    Sentinel自定义异常降级-新旧版本差异
    Android Bitmap压缩详解
    Head First之策略模式
    go测试
    go获取命令行参数
    JVM-垃圾收集算法基础
    Java代理模式
  • 原文地址:https://www.cnblogs.com/love-sherry/p/6942177.html
Copyright © 2011-2022 走看看