zoukankan      html  css  js  c++  java
  • windows下配置Faster-RCNN

    mark一个

    http://yun.baidu.com/share/link?shareid=1018944597&uk=1543560377

     http://blog.csdn.net/sinat_30071459/article/details/50546891

    配置环境: Windows10x64 Matlab2015Ra VS2013 Opencv2.4.11 CUDA7.5 GTX950M

    1. CUDA7.5安装 
      因为Cuda7.5做了很大的优化改进,而且对win10支持较好,所以这里选择安装Cuda7.5,具体过程 参考这里。但是由于作者Matlab 版本的Faster r-CNN的cnn库是在Cuda6.5下编译的,所以这里会出现问题,要么需要自己在Cuda7.5下编译,要么可以在这里下载。

    2. 下载 FasterR-CNN程序包 
      在作者ShaoqingRen的github上下载Matlab版本的faster-cnn:链接。然后解压到本地。

    3. 编译external/caffe库 
      如果你的电脑安装的是CUDA6.5, 那么可以直接运行fetch_data/fetch_caffe_mex_windows_vs2013_cuda65.m。 
      如果你是像本人那样安装了CUDA7.5, 那么你可以在这里下载编译好的库,直接解压到作者代码的根目录下。

    4. 生成nms mex文件 
      运行文件根目录下的:faster_rcnn_build.m 
      注意:这里运行的时候会经常报错,是需要将functions/nms/nvmex.m下的Cuda_path改成你电脑的CUDA安装路径。

    5. 设置相关函数路径 
      运行startup.m文件,这只函数运行的相关路径。

    6. 下载CNN的models 
      要么运行作者代码包里的:fetch_data/fetch_faster_rcnn_final_model.m 自动下载并保存在output文件夹里面。 
      或者自己在百度云里下载,并解压到output文件夹里。

    7. 测试运行demo 
      如果前面一切ok没有问题的话,这里将experiments/script_faster_rcnn_demo.m 拷贝到根目录下,然后运行就可以看到结果了。 
      注意:由于VGG16模型太大了,所以一般电脑运行起来会出现matlab奔溃,所以这里要么将 
      opts.use_gpu = false;在cpu下运行。 
      或者使用ZF模型(比VGG16简单,准确度降低):

        model_dir= fullfile(pwd, 'output', 'faster_rcnn_final', 'faster_rcnn_VOC0712_ZF');

    这样就可以看到测试图片的运行结果和运行时间了。 

  • 相关阅读:
    读取库中的所有表名
    ADOX学习
    自己寫的AccessDBHelper
    C#中Split用法~
    SQL Server:查看SQL日志文件大小SQL脚本
    MS SQL2005 How to find the top 50 cpu execution time.
    跨浏览器的本地存储解决方案
    這個SQL 語句你真的看明白了嗎?
    一个简单的SQL最优写法讨论(1)
    Gmail的标签容纳的邮件数量有限制。
  • 原文地址:https://www.cnblogs.com/love6tao/p/5820172.html
Copyright © 2011-2022 走看看