手头有一个实际的视觉检测的项目,用的是caffe来分类,于是需要用caffe新建自己的项目的例子。在网上找了好久都没有找到合适的,于是自己开始弄。
1 首先是配置caffe的VC++目录中的include和库文件。配置include lib dll都是坑,而且还分debug和release两个版本。添加输入项目需要注意,而且需要把编译好的caffe.lib等等一系列东西拷贝到当前项目下。也就是caffe bulid文件夹下面的东西,包括caffe.lib 、libcaffe.lib、还有很多dll.
这个是debug_include配置图
这个是debug_lib配置图
这个是release_include配置图
这个是release_lib配置图
同时也需要在,项目属性页的链接器输入中,填写相应的lib,其中debug和release是不同的。以下是需要填写的相应lib
//debug opencv_calib3d2413d.lib opencv_contrib2413d.lib opencv_core2413d.lib opencv_features2d2413d.lib opencv_flann2413d.lib opencv_gpu2413d.lib opencv_highgui2413d.lib opencv_imgproc2413d.lib opencv_legacy2413d.lib opencv_ml2413d.lib opencv_objdetect2413d.lib opencv_ts2413d.lib opencv_video2413d.lib caffe.lib libcaffe.lib cudart.lib cublas.lib curand.lib gflagsd.lib libglog.lib libopenblas.dll.a libprotobuf.lib leveldb.lib hdf5.lib hdf5_hl.lib Shlwapi.lib //release opencv_calib3d2413.lib opencv_contrib2413.lib opencv_core2413.lib opencv_features2d2413.lib opencv_flann2413.lib opencv_gpu2413.lib opencv_highgui2413.lib opencv_imgproc2413.lib opencv_legacy2413.lib opencv_ml2413.lib opencv_objdetect2413.lib opencv_ts2413.lib opencv_video2413.lib caffe.lib libcaffe.lib cudart.lib cublas.lib curand.lib gflags.lib libglog.lib libopenblas.dll.a libprotobuf.lib leveldb.lib lmdb.lib hdf5.lib hdf5_hl.lib Shlwapi.lib
2 新建一个Classifier的c++类,其中头文件为
#include "stdafx.h"
#include <caffe/caffe.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#pragma once
using namespace caffe; // NOLINT(build/namespaces)
using std::string;
//using namespace boost; 注意不需要添加这个
/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;
class Classifier
{
public:
Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file);
std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);
~Classifier();
private:
void SetMean(const string& mean_file);
std::vector<float> Predict(const cv::Mat& img);
void WrapInputLayer(std::vector<cv::Mat>* input_channels);
void Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels);
private:
boost::shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int num_channels_;
cv::Mat mean_;
std::vector<string> labels_;
};
c++文件为
#include "stdafx.h" #include "Classifier.h" Classifier::Classifier(const string& model_file, const string& trained_file, const string& mean_file, const string& label_file) { #ifdef CPU_ONLY Caffe::set_mode(Caffe::CPU); #else Caffe::set_mode(Caffe::GPU); #endif /* Load the network. */ net_.reset(new Net<float>(model_file, TEST)); net_->CopyTrainedLayersFrom(trained_file); CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input."; CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output."; Blob<float>* input_layer = net_->input_blobs()[0]; num_channels_ = input_layer->channels(); CHECK(num_channels_ == 3 || num_channels_ == 1) << "Input layer should have 1 or 3 channels."; input_geometry_ = cv::Size(input_layer->width(), input_layer->height()); /* Load the binaryproto mean file. */ SetMean(mean_file); /* Load labels. */ std::ifstream labels(label_file.c_str()); CHECK(labels) << "Unable to open labels file " << label_file; string line; while (std::getline(labels, line)) labels_.push_back(string(line)); Blob<float>* output_layer = net_->output_blobs()[0]; CHECK_EQ(labels_.size(), output_layer->channels()) << "Number of labels is different from the output layer dimension."; } static bool PairCompare(const std::pair<float, int>& lhs, const std::pair<float, int>& rhs) { return lhs.first > rhs.first; } /* Return the indices of the top N values of vector v. */ static std::vector<int> Argmax(const std::vector<float>& v, int N) { std::vector<std::pair<float, int> > pairs; for (size_t i = 0; i < v.size(); ++i) pairs.push_back(std::make_pair(v[i], static_cast<int>(i))); std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare); std::vector<int> result; for (int i = 0; i < N; ++i) result.push_back(pairs[i].second); return result; } /* Return the top N predictions. */ std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) { std::vector<float> output = Predict(img); N = std::min<int>(labels_.size(), N); std::vector<int> maxN = Argmax(output, N); std::vector<Prediction> predictions; for (int i = 0; i < N; ++i) { int idx = maxN[i]; predictions.push_back(std::make_pair(labels_[idx], output[idx])); } return predictions; } /* Load the mean file in binaryproto format. */ void Classifier::SetMean(const string& mean_file) { BlobProto blob_proto; ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto); /* Convert from BlobProto to Blob<float> */ Blob<float> mean_blob; mean_blob.FromProto(blob_proto); CHECK_EQ(mean_blob.channels(), num_channels_) << "Number of channels of mean file doesn't match input layer."; /* The format of the mean file is planar 32-bit float BGR or grayscale. */ std::vector<cv::Mat> channels; float* data = mean_blob.mutable_cpu_data(); for (int i = 0; i < num_channels_; ++i) { /* Extract an individual channel. */ cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data); channels.push_back(channel); data += mean_blob.height() * mean_blob.width(); } /* Merge the separate channels into a single image. */ cv::Mat mean; cv::merge(channels, mean); /* Compute the global mean pixel value and create a mean image * filled with this value. */ cv::Scalar channel_mean = cv::mean(mean); mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean); } std::vector<float> Classifier::Predict(const cv::Mat& img) { Blob<float>* input_layer = net_->input_blobs()[0]; input_layer->Reshape(1, num_channels_, input_geometry_.height, input_geometry_.width); /* Forward dimension change to all layers. */ net_->Reshape(); std::vector<cv::Mat> input_channels; WrapInputLayer(&input_channels); Preprocess(img, &input_channels); net_->Forward(); /* Copy the output layer to a std::vector */ Blob<float>* output_layer = net_->output_blobs()[0]; const float* begin = output_layer->cpu_data(); const float* end = begin + output_layer->channels(); return std::vector<float>(begin, end); } /* Wrap the input layer of the network in separate cv::Mat objects * (one per channel). This way we save one memcpy operation and we * don't need to rely on cudaMemcpy2D. The last preprocessing * operation will write the separate channels directly to the input * layer. */ void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) { Blob<float>* input_layer = net_->input_blobs()[0]; int width = input_layer->width(); int height = input_layer->height(); float* input_data = input_layer->mutable_cpu_data(); for (int i = 0; i < input_layer->channels(); ++i) { cv::Mat channel(height, width, CV_32FC1, input_data); input_channels->push_back(channel); input_data += width * height; } } void Classifier::Preprocess(const cv::Mat& img, std::vector<cv::Mat>* input_channels) { /* Convert the input image to the input image format of the network. */ cv::Mat sample; if (img.channels() == 3 && num_channels_ == 1) cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY); else if (img.channels() == 4 && num_channels_ == 1) cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY); else if (img.channels() == 4 && num_channels_ == 3) cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR); else if (img.channels() == 1 && num_channels_ == 3) cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR); else sample = img; cv::Mat sample_resized; if (sample.size() != input_geometry_) cv::resize(sample, sample_resized, input_geometry_); else sample_resized = sample; cv::Mat sample_float; if (num_channels_ == 3) sample_resized.convertTo(sample_float, CV_32FC3); else sample_resized.convertTo(sample_float, CV_32FC1); cv::Mat sample_normalized; cv::subtract(sample_float, mean_, sample_normalized); /* This operation will write the separate BGR planes directly to the * input layer of the network because it is wrapped by the cv::Mat * objects in input_channels. */ cv::split(sample_normalized, *input_channels); CHECK(reinterpret_cast<float*>(input_channels->at(0).data) == net_->input_blobs()[0]->cpu_data()) << "Input channels are not wrapping the input layer of the network."; } Classifier::~Classifier() { }
c++,文件来自于caffe-masterexamplescpp_classification中的classification.cpp文件
3 直接编译后会出现的问题是F0519 14:54:12.494139 14504 layer_factory.hpp:77] Check failed: registry.count(t ype) == 1 (0 vs. 1) Unknown layer type: Input (known types: Input ),百度后发现是要加头文件!http://blog.csdn.net/fangjin_kl/article/details/50936952#0-tsina-1-63793-397232819ff9a47a7b7e80a40613cfe1
因此安装上面说的新建一个head.h
#include "caffe/common.hpp" #include "caffe/layers/input_layer.hpp" #include "caffe/layers/inner_product_layer.hpp" #include "caffe/layers/dropout_layer.hpp" #include "caffe/layers/conv_layer.hpp" #include "caffe/layers/relu_layer.hpp" #include "caffe/layers/pooling_layer.hpp" #include "caffe/layers/lrn_layer.hpp" #include "caffe/layers/softmax_layer.hpp" namespace caffe { extern INSTANTIATE_CLASS(InputLayer); extern INSTANTIATE_CLASS(InnerProductLayer); extern INSTANTIATE_CLASS(DropoutLayer); extern INSTANTIATE_CLASS(ConvolutionLayer); REGISTER_LAYER_CLASS(Convolution); extern INSTANTIATE_CLASS(ReLULayer); REGISTER_LAYER_CLASS(ReLU); extern INSTANTIATE_CLASS(PoolingLayer); REGISTER_LAYER_CLASS(Pooling); extern INSTANTIATE_CLASS(LRNLayer); REGISTER_LAYER_CLASS(LRN); extern INSTANTIATE_CLASS(SoftmaxLayer); REGISTER_LAYER_CLASS(Softmax); }
注意上述网络可能不全,需要根据实际的网络添加层。参考
1 #include<caffe/common.hpp> 2 #include<caffe/proto/caffe.pb.h> 3 #include<caffe/layers/batch_norm_layer.hpp> 4 #include<caffe/layers/bias_layer.hpp> 5 #include <caffe/layers/concat_layer.hpp> 6 #include <caffe/layers/conv_layer.hpp> 7 #include <caffe/layers/dropout_layer.hpp> 8 #include<caffe/layers/input_layer.hpp> 9 #include <caffe/layers/inner_product_layer.hpp> 10 #include "caffe/layers/lrn_layer.hpp" 11 #include <caffe/layers/pooling_layer.hpp> 12 #include <caffe/layers/relu_layer.hpp> 13 #include "caffe/layers/softmax_layer.hpp" 14 #include<caffe/layers/scale_layer.hpp> 15 namespace caffe 16 { 17 extern INSTANTIATE_CLASS(BatchNormLayer); 18 extern INSTANTIATE_CLASS(BiasLayer); 19 extern INSTANTIATE_CLASS(InputLayer); 20 extern INSTANTIATE_CLASS(InnerProductLayer); 21 extern INSTANTIATE_CLASS(DropoutLayer); 22 extern INSTANTIATE_CLASS(ConvolutionLayer); 23 REGISTER_LAYER_CLASS(Convolution); 24 extern INSTANTIATE_CLASS(ReLULayer); 25 REGISTER_LAYER_CLASS(ReLU); 26 extern INSTANTIATE_CLASS(PoolingLayer); 27 REGISTER_LAYER_CLASS(Pooling); 28 extern INSTANTIATE_CLASS(LRNLayer); 29 REGISTER_LAYER_CLASS(LRN); 30 extern INSTANTIATE_CLASS(SoftmaxLayer); 31 REGISTER_LAYER_CLASS(Softmax); 32 extern INSTANTIATE_CLASS(ScaleLayer); 33 extern INSTANTIATE_CLASS(ConcatLayer); 34 35 }
4 出现的第二个问题是有些符号GLOG_NO_ABBREVIATED_SEVERITIES未定义,因此在项目属性页 c++预处理器中添加下面两个:
GLOG_NO_ABBREVIATED_SEVERITIES
_SCL_SECURE_NO_WARNINGS
5 同时需要把
#include <caffe/proto/caffe.pb.h>
#include "head.h"
这两个头文件放到stdafx.h中,必须放到里面。
6 编译通过后,编写测试分类的程序,首先加载caffermodle.
string model_file = "D:\caffe\caffe-master\mypower\deploy.prototxt";//prototxt 这个必须是depoly,这个是计算输出的类别概率
string trained_file = "D:\caffe\caffe-master\mypower_iter_2000.caffemodel"; //这个是训练好的model
string mean_file = "D:\caffe\caffe-master\mypower\imagenet_mean.binaryproto";//这个是均值文件
string label_file ="D:\caffe\caffe-master\mypower\label.txt"; //这个是样本标签 ,如果两类,可以新建一个txt文件,里面写作如下
0 good 1 bad
定义一个指针 Classifier *classifier;
classifier = new Classifier(model_file, trained_file, mean_file, label_file);
分类程序:
cv::Mat img(roiimage, 0);//加载图像 //CHECK(!img.empty()) << "Unable to decode image " ; std::vector<Prediction> predictions = classifier->Classify(img); /* Print the top N predictions. */ string precision_p0=""; for (size_t i = 0; i < predictions.size()-1; ++i)//只输出了概率最大的那一类,通常就是第一类 { Prediction p = predictions[i]; precision_p0 = p.first; std::cout << std::fixed << std::setprecision(4) << p.second << " - "" << p.first << """ << std::endl;
} char firstc = precision_p0[0]; if (firstc == '0')//第一类正样本 好的
{ //AfxMessageBox("good"); } else //第二类负样本 存在缺陷 { //AfxMessageBox("bad"); }