zoukankan      html  css  js  c++  java
  • caffe-window搭建自己的小项目例子

               手头有一个实际的视觉检测的项目,用的是caffe来分类,于是需要用caffe新建自己的项目的例子。在网上找了好久都没有找到合适的,于是自己开始弄。

    1 首先是配置caffe的VC++目录中的include和库文件。配置include lib dll都是坑,而且还分debug和release两个版本。添加输入项目需要注意,而且需要把编译好的caffe.lib等等一系列东西拷贝到当前项目下。也就是caffe bulid文件夹下面的东西,包括caffe.lib 、libcaffe.lib、还有很多dll.

    这个是debug_include配置图

    这个是debug_lib配置图

    这个是release_include配置图

    这个是release_lib配置图

    同时也需要在,项目属性页的链接器输入中,填写相应的lib,其中debug和release是不同的。以下是需要填写的相应lib

    //debug
    opencv_calib3d2413d.lib
    opencv_contrib2413d.lib
    opencv_core2413d.lib
    opencv_features2d2413d.lib
    opencv_flann2413d.lib
    opencv_gpu2413d.lib
    opencv_highgui2413d.lib
    opencv_imgproc2413d.lib
    opencv_legacy2413d.lib
    opencv_ml2413d.lib
    opencv_objdetect2413d.lib
    opencv_ts2413d.lib
    opencv_video2413d.lib
    caffe.lib
    libcaffe.lib
    cudart.lib
    cublas.lib
    curand.lib
    gflagsd.lib
    libglog.lib
    libopenblas.dll.a
    libprotobuf.lib
    leveldb.lib
    hdf5.lib
    hdf5_hl.lib
    Shlwapi.lib
    //release
    opencv_calib3d2413.lib
    opencv_contrib2413.lib
    opencv_core2413.lib
    opencv_features2d2413.lib
    opencv_flann2413.lib
    opencv_gpu2413.lib
    opencv_highgui2413.lib
    opencv_imgproc2413.lib
    opencv_legacy2413.lib
    opencv_ml2413.lib
    opencv_objdetect2413.lib
    opencv_ts2413.lib
    opencv_video2413.lib
    caffe.lib
    libcaffe.lib
    cudart.lib
    cublas.lib
    curand.lib
    gflags.lib
    libglog.lib
    libopenblas.dll.a
    libprotobuf.lib
    leveldb.lib
    lmdb.lib
    hdf5.lib
    hdf5_hl.lib
    Shlwapi.lib

     2 新建一个Classifier的c++类,其中头文件为

    #include "stdafx.h"
    
    #include <caffe/caffe.hpp>
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #include <algorithm>
    #include <iosfwd>
    #include <memory>
    #include <string>
    #include <utility>
    #include <vector>
    
    
    #pragma once
    
    using namespace caffe;  // NOLINT(build/namespaces)
    using std::string;
    //using namespace boost; 注意不需要添加这个
    
    /* Pair (label, confidence) representing a prediction. */
    typedef std::pair<string, float> Prediction;
    
    
    class Classifier
    {
    public:
    	Classifier(const string& model_file,
    		const string& trained_file,
    		const string& mean_file,
    		const string& label_file);
    
    	std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);
    
    	~Classifier();
    
    private:
    	void SetMean(const string& mean_file);
    
    	std::vector<float> Predict(const cv::Mat& img);
    
    	void WrapInputLayer(std::vector<cv::Mat>* input_channels);
    
    	void Preprocess(const cv::Mat& img,
    		std::vector<cv::Mat>* input_channels);
    
    private:
    	boost::shared_ptr<Net<float> > net_;
    	cv::Size input_geometry_;
    	int num_channels_;
    	cv::Mat mean_;
    	std::vector<string> labels_;
    };
    

      c++文件为

    #include "stdafx.h"
    #include "Classifier.h"
    
    
    
    Classifier::Classifier(const string& model_file,
    	const string& trained_file,
    	const string& mean_file,
    	const string& label_file) {
    #ifdef CPU_ONLY
    	Caffe::set_mode(Caffe::CPU);
    #else
    	Caffe::set_mode(Caffe::GPU);
    #endif
    
    	/* Load the network. */
    	net_.reset(new Net<float>(model_file, TEST));
    	net_->CopyTrainedLayersFrom(trained_file);
    
    	CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
    	CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
    
    	Blob<float>* input_layer = net_->input_blobs()[0];
    	num_channels_ = input_layer->channels();
    	CHECK(num_channels_ == 3 || num_channels_ == 1)
    		<< "Input layer should have 1 or 3 channels.";
    	input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
    
    	/* Load the binaryproto mean file. */
    	SetMean(mean_file);
    
    	/* Load labels. */
    	std::ifstream labels(label_file.c_str());
    	CHECK(labels) << "Unable to open labels file " << label_file;
    	string line;
    	while (std::getline(labels, line))
    		labels_.push_back(string(line));
    
    	Blob<float>* output_layer = net_->output_blobs()[0];
    	CHECK_EQ(labels_.size(), output_layer->channels())
    		<< "Number of labels is different from the output layer dimension.";
    }
    
    static bool PairCompare(const std::pair<float, int>& lhs,
    	const std::pair<float, int>& rhs) {
    	return lhs.first > rhs.first;
    }
    
    /* Return the indices of the top N values of vector v. */
    static std::vector<int> Argmax(const std::vector<float>& v, int N) {
    	std::vector<std::pair<float, int> > pairs;
    	for (size_t i = 0; i < v.size(); ++i)
    		pairs.push_back(std::make_pair(v[i], static_cast<int>(i)));
    	std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
    
    	std::vector<int> result;
    	for (int i = 0; i < N; ++i)
    		result.push_back(pairs[i].second);
    	return result;
    }
    
    /* Return the top N predictions. */
    std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
    	std::vector<float> output = Predict(img);
    
    	N = std::min<int>(labels_.size(), N);
    	std::vector<int> maxN = Argmax(output, N);
    	std::vector<Prediction> predictions;
    	for (int i = 0; i < N; ++i) {
    		int idx = maxN[i];
    		predictions.push_back(std::make_pair(labels_[idx], output[idx]));
    	}
    
    	return predictions;
    }
    
    /* Load the mean file in binaryproto format. */
    void Classifier::SetMean(const string& mean_file) {
    	BlobProto blob_proto;
    	ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
    
    	/* Convert from BlobProto to Blob<float> */
    	Blob<float> mean_blob;
    	mean_blob.FromProto(blob_proto);
    	CHECK_EQ(mean_blob.channels(), num_channels_)
    		<< "Number of channels of mean file doesn't match input layer.";
    
    	/* The format of the mean file is planar 32-bit float BGR or grayscale. */
    	std::vector<cv::Mat> channels;
    	float* data = mean_blob.mutable_cpu_data();
    	for (int i = 0; i < num_channels_; ++i) {
    		/* Extract an individual channel. */
    		cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
    		channels.push_back(channel);
    		data += mean_blob.height() * mean_blob.width();
    	}
    
    	/* Merge the separate channels into a single image. */
    	cv::Mat mean;
    	cv::merge(channels, mean);
    
    	/* Compute the global mean pixel value and create a mean image
    	* filled with this value. */
    	cv::Scalar channel_mean = cv::mean(mean);
    	mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
    }
    
    std::vector<float> Classifier::Predict(const cv::Mat& img) {
    	Blob<float>* input_layer = net_->input_blobs()[0];
    	input_layer->Reshape(1, num_channels_,
    		input_geometry_.height, input_geometry_.width);
    	/* Forward dimension change to all layers. */
    	net_->Reshape();
    
    	std::vector<cv::Mat> input_channels;
    	WrapInputLayer(&input_channels);
    
    	Preprocess(img, &input_channels);
    
    	net_->Forward();
    
    	/* Copy the output layer to a std::vector */
    	Blob<float>* output_layer = net_->output_blobs()[0];
    	const float* begin = output_layer->cpu_data();
    	const float* end = begin + output_layer->channels();
    	return std::vector<float>(begin, end);
    }
    
    /* Wrap the input layer of the network in separate cv::Mat objects
    * (one per channel). This way we save one memcpy operation and we
    * don't need to rely on cudaMemcpy2D. The last preprocessing
    * operation will write the separate channels directly to the input
    * layer. */
    void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
    	Blob<float>* input_layer = net_->input_blobs()[0];
    
    	int width = input_layer->width();
    	int height = input_layer->height();
    	float* input_data = input_layer->mutable_cpu_data();
    	for (int i = 0; i < input_layer->channels(); ++i) {
    		cv::Mat channel(height, width, CV_32FC1, input_data);
    		input_channels->push_back(channel);
    		input_data += width * height;
    	}
    }
    
    void Classifier::Preprocess(const cv::Mat& img,
    	std::vector<cv::Mat>* input_channels) {
    	/* Convert the input image to the input image format of the network. */
    	cv::Mat sample;
    	if (img.channels() == 3 && num_channels_ == 1)
    		cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
    	else if (img.channels() == 4 && num_channels_ == 1)
    		cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
    	else if (img.channels() == 4 && num_channels_ == 3)
    		cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
    	else if (img.channels() == 1 && num_channels_ == 3)
    		cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
    	else
    		sample = img;
    
    	cv::Mat sample_resized;
    	if (sample.size() != input_geometry_)
    		cv::resize(sample, sample_resized, input_geometry_);
    	else
    		sample_resized = sample;
    
    	cv::Mat sample_float;
    	if (num_channels_ == 3)
    		sample_resized.convertTo(sample_float, CV_32FC3);
    	else
    		sample_resized.convertTo(sample_float, CV_32FC1);
    
    	cv::Mat sample_normalized;
    	cv::subtract(sample_float, mean_, sample_normalized);
    
    	/* This operation will write the separate BGR planes directly to the
    	* input layer of the network because it is wrapped by the cv::Mat
    	* objects in input_channels. */
    	cv::split(sample_normalized, *input_channels);
    
    	CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
    		== net_->input_blobs()[0]->cpu_data())
    		<< "Input channels are not wrapping the input layer of the network.";
    }
    
    Classifier::~Classifier()
    {
    }
    

      c++,文件来自于caffe-masterexamplescpp_classification中的classification.cpp文件

    3 直接编译后会出现的问题是F0519 14:54:12.494139 14504 layer_factory.hpp:77] Check failed: registry.count(t ype) == 1 (0 vs. 1) Unknown layer type: Input (known types: Input ),百度后发现是要加头文件!http://blog.csdn.net/fangjin_kl/article/details/50936952#0-tsina-1-63793-397232819ff9a47a7b7e80a40613cfe1

    因此安装上面说的新建一个head.h    

    #include "caffe/common.hpp"
    #include "caffe/layers/input_layer.hpp"
    #include "caffe/layers/inner_product_layer.hpp"
    #include "caffe/layers/dropout_layer.hpp"
    #include "caffe/layers/conv_layer.hpp"
    #include "caffe/layers/relu_layer.hpp"
    
    #include "caffe/layers/pooling_layer.hpp"
    #include "caffe/layers/lrn_layer.hpp"
    #include "caffe/layers/softmax_layer.hpp"
    
    
    namespace caffe
    {
    
    	extern INSTANTIATE_CLASS(InputLayer);
    	extern INSTANTIATE_CLASS(InnerProductLayer);
    	extern INSTANTIATE_CLASS(DropoutLayer);
    	extern INSTANTIATE_CLASS(ConvolutionLayer);
    	REGISTER_LAYER_CLASS(Convolution);
    	extern INSTANTIATE_CLASS(ReLULayer);
    	REGISTER_LAYER_CLASS(ReLU);
    	extern INSTANTIATE_CLASS(PoolingLayer);
    	REGISTER_LAYER_CLASS(Pooling);
    	extern INSTANTIATE_CLASS(LRNLayer);
    	REGISTER_LAYER_CLASS(LRN);
    	extern INSTANTIATE_CLASS(SoftmaxLayer);
    	REGISTER_LAYER_CLASS(Softmax);
    
    }
    

    注意上述网络可能不全,需要根据实际的网络添加层。参考

     1 #include<caffe/common.hpp>
     2 #include<caffe/proto/caffe.pb.h>
     3 #include<caffe/layers/batch_norm_layer.hpp>
     4 #include<caffe/layers/bias_layer.hpp>
     5 #include <caffe/layers/concat_layer.hpp>  
     6 #include <caffe/layers/conv_layer.hpp>
     7 #include <caffe/layers/dropout_layer.hpp>  
     8 #include<caffe/layers/input_layer.hpp>
     9 #include <caffe/layers/inner_product_layer.hpp>   
    10 #include "caffe/layers/lrn_layer.hpp"    
    11 #include <caffe/layers/pooling_layer.hpp>    
    12 #include <caffe/layers/relu_layer.hpp>    
    13 #include "caffe/layers/softmax_layer.hpp"  
    14 #include<caffe/layers/scale_layer.hpp>
    15 namespace caffe
    16 {
    17     extern INSTANTIATE_CLASS(BatchNormLayer);
    18     extern INSTANTIATE_CLASS(BiasLayer);
    19     extern INSTANTIATE_CLASS(InputLayer);
    20     extern INSTANTIATE_CLASS(InnerProductLayer);
    21     extern INSTANTIATE_CLASS(DropoutLayer);
    22     extern INSTANTIATE_CLASS(ConvolutionLayer);
    23     REGISTER_LAYER_CLASS(Convolution);
    24     extern INSTANTIATE_CLASS(ReLULayer);
    25     REGISTER_LAYER_CLASS(ReLU);
    26     extern INSTANTIATE_CLASS(PoolingLayer);
    27     REGISTER_LAYER_CLASS(Pooling);
    28     extern INSTANTIATE_CLASS(LRNLayer);
    29     REGISTER_LAYER_CLASS(LRN);
    30     extern INSTANTIATE_CLASS(SoftmaxLayer);
    31     REGISTER_LAYER_CLASS(Softmax);
    32     extern INSTANTIATE_CLASS(ScaleLayer);
    33     extern INSTANTIATE_CLASS(ConcatLayer);
    34 
    35 }
    View Code

    4 出现的第二个问题是有些符号GLOG_NO_ABBREVIATED_SEVERITIES未定义,因此在项目属性页 c++预处理器中添加下面两个:

    GLOG_NO_ABBREVIATED_SEVERITIES
    _SCL_SECURE_NO_WARNINGS

    5 同时需要把

    #include <caffe/proto/caffe.pb.h>
    #include "head.h"

    这两个头文件放到stdafx.h中,必须放到里面。

    6 编译通过后,编写测试分类的程序,首先加载caffermodle.

    string model_file = "D:\caffe\caffe-master\mypower\deploy.prototxt";//prototxt 这个必须是depoly,这个是计算输出的类别概率
    string trained_file = "D:\caffe\caffe-master\mypower_iter_2000.caffemodel"; //这个是训练好的model
    string mean_file = "D:\caffe\caffe-master\mypower\imagenet_mean.binaryproto";//这个是均值文件
    string label_file ="D:\caffe\caffe-master\mypower\label.txt"; //这个是样本标签 ,如果两类,可以新建一个txt文件,里面写作如下

    0 good
    1 bad

    定义一个指针  Classifier *classifier;
    classifier = new Classifier(model_file, trained_file, mean_file, label_file);

     分类程序:

       cv::Mat img(roiimage, 0);//加载图像
       //CHECK(!img.empty()) << "Unable to decode image " ;
       std::vector<Prediction> predictions = classifier->Classify(img);
       /* Print the top N predictions. */
       string precision_p0="";
       for (size_t i = 0; i < predictions.size()-1; ++i)//只输出了概率最大的那一类,通常就是第一类
       {
    	Prediction p = predictions[i];
    	precision_p0 = p.first;
    	std::cout << std::fixed << std::setprecision(4) << p.second << " - ""
    	<< p.first << """ << std::endl;
    } char firstc = precision_p0[0]; if (firstc == '0')//第一类正样本 好的
    { //AfxMessageBox("good"); } else //第二类负样本 存在缺陷 { //AfxMessageBox("bad"); }
  • 相关阅读:
    struts2--OGNL
    struts2--通配符映射
    struts2--action请求与Action类
    mabatis--查询缓存
    mabatis--动态sql
    JS之正则表达式
    CSS样式表之background背景
    CSS样式表之常用文本属性
    CSS样式之选择器
    CSS样式之连接方式
  • 原文地址:https://www.cnblogs.com/love6tao/p/5847480.html
Copyright © 2011-2022 走看看