zoukankan      html  css  js  c++  java
  • Hdu 4035 Maze(概率DP)

     
    Problem Description
    When wake up, lxhgww find himself in a huge maze.

    The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.

    Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room).
    What is the expect number of tunnels he go through before he find the exit?
     
    Input
    First line is an integer T (T ≤ 30), the number of test cases.

    At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.

    Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.

    Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room.
     
    Output
    For each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.
     
    Sample Input
    3 3 1 2 1 3 0 0 100 0 0 100 3 1 2 2 3 0 0 100 0 0 100 6 1 2 2 3 1 4 4 5 4 6 0 0 20 30 40 30 50 50 70 10 20 60
     
    Sample Output
    Case 1: 2.000000 Case 2: impossible Case 3: 2.895522
     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    
    const int N=1e4+5;
    const double eps=1e-9;
    
    int T,n;
    int deg[N];
    double A[N],B[N],C[N];
    double k[N],e[N];
    
    int head[N],num_edge;
    struct Edge
    {
        int v,nxt;
    }edge[N<<1];
    
    inline void add_edge(int u,int v)
    {
        edge[++num_edge].v=v;
        edge[num_edge].nxt=head[u];
        head[u]=num_edge;
    }
    
    bool dfs(int u,int fa)
    {
        double m=deg[u];
        A[u]=k[u];
        B[u]=(1-k[u]-e[u])/m;
        C[u]=1-k[u]-e[u];
        double tmp=1,ratio=B[u];
        for(int i=head[u],v;i;i=edge[i].nxt)
        {
            v=edge[i].v;
            if(v==fa)
                continue;
            if(!dfs(v,u))
                return false;
            tmp-=ratio*B[v];
            A[u]+=ratio*A[v];
            C[u]+=ratio*C[v];
        }
        if(fabs(tmp)<=eps)
            return false;
        A[u]/=tmp;
        B[u]/=tmp;
        C[u]/=tmp;
        return true;
    }
    
    int taskid;
    int main()
    {
        scanf("%d",&T);
        while(T--)
        {
            memset(deg,0,sizeof(deg));
            memset(head,0,sizeof(head));
            num_edge=0;
            scanf("%d",&n);
            for(int i=1,a,b;i<n;++i)
            {
                scanf("%d%d",&a,&b);
                ++deg[a],++deg[b];
                add_edge(a,b);
                add_edge(b,a);
            }
            for(int i=1;i<=n;++i)
            {
                scanf("%lf%lf",k+i,e+i);
                k[i]/=100,e[i]/=100;
            }
            cout<<"Case "<<++taskid<<": ";
            if(dfs(1,1)&&fabs(1-A[1])>eps)
                cout<<C[1]/(1-A[1])<<'
    ';
            else
                puts("impossible");
        }
        
        return 0;
    }
  • 相关阅读:
    ROUTEROS常用命令
    失败团队领导者的10个特征
    一关于C#程序反编译讨论的帖子
    给窗体的任务栏右键菜单增加项目
    C#实现自动填表
    JavaScript实现拷贝图像
    跟踪路由Tracert
    更改软件默认安装目录
    清除右键菜单右打开方式中的项
    程序员的十层楼(1~8层)
  • 原文地址:https://www.cnblogs.com/lovewhy/p/9788362.html
Copyright © 2011-2022 走看看