zoukankan      html  css  js  c++  java
  • Hdu 4035 Maze(概率DP)

     
    Problem Description
    When wake up, lxhgww find himself in a huge maze.

    The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.

    Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room).
    What is the expect number of tunnels he go through before he find the exit?
     
    Input
    First line is an integer T (T ≤ 30), the number of test cases.

    At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.

    Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.

    Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room.
     
    Output
    For each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.
     
    Sample Input
    3 3 1 2 1 3 0 0 100 0 0 100 3 1 2 2 3 0 0 100 0 0 100 6 1 2 2 3 1 4 4 5 4 6 0 0 20 30 40 30 50 50 70 10 20 60
     
    Sample Output
    Case 1: 2.000000 Case 2: impossible Case 3: 2.895522
     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    
    const int N=1e4+5;
    const double eps=1e-9;
    
    int T,n;
    int deg[N];
    double A[N],B[N],C[N];
    double k[N],e[N];
    
    int head[N],num_edge;
    struct Edge
    {
        int v,nxt;
    }edge[N<<1];
    
    inline void add_edge(int u,int v)
    {
        edge[++num_edge].v=v;
        edge[num_edge].nxt=head[u];
        head[u]=num_edge;
    }
    
    bool dfs(int u,int fa)
    {
        double m=deg[u];
        A[u]=k[u];
        B[u]=(1-k[u]-e[u])/m;
        C[u]=1-k[u]-e[u];
        double tmp=1,ratio=B[u];
        for(int i=head[u],v;i;i=edge[i].nxt)
        {
            v=edge[i].v;
            if(v==fa)
                continue;
            if(!dfs(v,u))
                return false;
            tmp-=ratio*B[v];
            A[u]+=ratio*A[v];
            C[u]+=ratio*C[v];
        }
        if(fabs(tmp)<=eps)
            return false;
        A[u]/=tmp;
        B[u]/=tmp;
        C[u]/=tmp;
        return true;
    }
    
    int taskid;
    int main()
    {
        scanf("%d",&T);
        while(T--)
        {
            memset(deg,0,sizeof(deg));
            memset(head,0,sizeof(head));
            num_edge=0;
            scanf("%d",&n);
            for(int i=1,a,b;i<n;++i)
            {
                scanf("%d%d",&a,&b);
                ++deg[a],++deg[b];
                add_edge(a,b);
                add_edge(b,a);
            }
            for(int i=1;i<=n;++i)
            {
                scanf("%lf%lf",k+i,e+i);
                k[i]/=100,e[i]/=100;
            }
            cout<<"Case "<<++taskid<<": ";
            if(dfs(1,1)&&fabs(1-A[1])>eps)
                cout<<C[1]/(1-A[1])<<'
    ';
            else
                puts("impossible");
        }
        
        return 0;
    }
  • 相关阅读:
    数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
    51Nod1123 X^A Mod B 数论 中国剩余定理 原根 BSGS
    BZOJ2219 数论之神 数论 中国剩余定理 原根 BSGS
    BZOJ3583 杰杰的女性朋友 矩阵
    BZOJ2821 作诗(Poetize) 主席树 bitset
    BZOJ2178 圆的面积并 计算几何 辛普森积分
    BZOJ1058 [ZJOI2007]报表统计 set
    BZOJ2480 Spoj3105 Mod 数论 扩展BSGS
    BZOJ1095 [ZJOI2007]Hide 捉迷藏 动态点分治 堆
    AtCoder Regular Contest 101 (ARC101) D
  • 原文地址:https://www.cnblogs.com/lovewhy/p/9788362.html
Copyright © 2011-2022 走看看