Sort
时间限制:1000 ms | 内存限制:65535 KB
难度:4
- 描述
- You want to processe a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. Then how many times it need.
For example, 1 2 3 5 4, we only need one operation : swap 5 and 4.
- 输入
- The input consists of T number of test cases.(<0T<1000) Each case consists of two lines: the first line contains a positive integer n (n <= 1000); the next line contains a permutation of the n integers from 1 to n.
- 输出
- For each case, output the minimum times need to sort it in ascending order on a single line.
- 样例输入
-
2 3 1 2 3 4 4 3 2 1
- 样例输出
-
0 6
如果按冒泡排序这些O(n^2)肯定会超时,所以需要找一种更快的方法 --------归并排序。
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。这题还可以用树状数组来做
法一:用归并排序做
#include<stdio.h> int a[1000001],b[1000001]; /*合并排序结果先保存到b中*/ int merge(int a[],int low,int mid,int high) { int i=low,j=mid+1,k=low; int count=0;/*计数器*/ while((i<=mid)&&(j<=high))/*部分合并*/ { if(a[i]<=a[j]) { b[k++]=a[i++]; } else { b[k++]=a[j++]; count+=(mid-i+1); } } while(i<=mid)/*转储剩余部分*/ { b[k++]=a[i++]; } while(j<=high) { b[k++]=a[j++]; } for(i=low;i<=high;++i)/*把b中的值复制给a*/ { a[i]=b[i]; } return count; } int sort(int a[],int low,int high) { int x,y,z; int mid=(high+low)/2; int i=low,j=mid+1; if(low>=high) { return 0; } x=sort(a,low,mid); y=sort(a,mid+1,high); z=merge(a,low,mid,high); return (x+y+z); } int main() { int ncases,n,i; scanf("%d",&ncases); while(ncases--) { scanf("%d",&n); for(i=0;i<=n-1;i++) { scanf("%d",&a[i]); } printf("%d ",sort(a,0,n-1)); } return 0; }
法二:用树状数组
不知道什么是树状数组的 就先看看树状数组吧。。链接:http://dongxicheng.org/structure/binary_indexed_tree/
#include<stdio.h> #include<string.h> int num[1004],n; int lowbit(int x) { return x&(-x); } void add(int x) //更新含有x的数组个数 { while(x<=n) { num[x]++; x+=lowbit(x); } } int sum(int x) //向下统计小于x的个数 { int total=0; while(x>0) { total+=num[x]; x-=lowbit(x); } return total; } int main() { int x,cases; scanf("%d",&cases); while(cases--) { scanf( "%d",&n); memset( num,0,sizeof( num )); int ss = 0; for( int i = 0; i < n; ++i ) { scanf( "%d",&x); add(x); ss += (i-sum( x - 1 )); } printf( "%d ",ss ); } return 0; }