zoukankan      html  css  js  c++  java
  • 二叉树:先序 中序 后序

     同学整理的,顺便传上分享下

    一,已知先序和中序 求后序

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 using namespace std;
     5 char s1[10],s2[10],ans[10];
     6 int o = 0;
     7 void tree(int n , char * s1 , char * s2 , char* s)
     8 {
     9     if(n <= 0) return ;
    10     int p = strchr(s2,s1[0])-s2;   //找到根结点在中序遍历中的位置  strchr  查找根节点字符在s1中首次出现的位置
    11     tree(p,s1+1,s2,s);                 //递归构造左子树的后续遍历
    12     tree(n-p-1,s1+p+1,s2+p+1,s+p);         //递归构造右子树的后序遍历
    13     s[n-1]=s1[0];                    //把根节点添加到最后
    14 }
    15 int main()
    16 {   //输入的是先序和中序
    17     while(cin>>s1>>s2)
    18     {
    19         int  n = strlen(s1);
    20         tree(n,s1,s2,ans);
    21         ans[n]='';
    22         printf("%s
    ",ans);
    23     }
    24     return 0;
    25 }


    二、已知中序和后序遍历,求前序遍历

    给出中序和后序遍历:

    中序遍历:       ADEFGHMZ

    后序遍历:       AEFDHZMG

    画树求法:

    第一步,根据后序遍历的特点,我们知道后序遍历最后一个结点即为根结点,即根结点为G。

    第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

    第三步,观察中序遍历左子树ADEF,后序对应的是AEFD,回到第一步,根据后续遍历特点,根节点为D。

    第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前后序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。

    第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

    1 确定根,确定左子树,确定右子树。

    2 在左子树中递归。

    3 在右子树中递归。

    4 打印当前根。

    那么,前序遍历:         GDAFEMHZ



    样例输入
    BADC
    BDCA

    样例输出
    ABCD

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 using namespace std;
     5 char s1[10],s2[10],ans[10];
     6 int o = 0;
     7 void tree(int n , char * s1 , char * s2 , char* s)
     8 {
     9     if(n <= 0) return ;
    10     int p = strchr(s1,s2[n-1])-s1;   //找到根结点在中序遍历中的位置
    11     s[o++] = s2[n-1];                //把根节点添加到最前面(正好与后序相反)或者每次就直接输出s2[n-1],这样就不需要s再来保存
    12     tree(p,s1,s2,s);                 //递归构造左子树的后续遍历
    13     tree(n-p-1,s1+p+1,s2+p,s);       //递归构造右子树的后续遍历
    14 }
    15 int main()
    16 {   //输入的是中序和后续
    17     while(cin>>s1>>s2)
    18     {
    19         int  n = strlen(s1);
    20         tree(n,s1,s2,ans);
    21         ans[n]='';
    22         printf("%s
    ",ans);
    23     }
    24     return 0;
    25 }


    中  BDACE
    后  DBECA
    1.由后序遍历的知道最后一个节点一定是根节点,该例中为A
    2.中序中对应的根就是A,推得A为根BD为左子树CE为右子树
    3.左子树2个结点右子树也为2个,因为后序遍历是先左再右因此将后序分为两段左DB,右EC
    4.由此确定左子树的根为B,右子树根为C:可以由后序遍历最后一个结点为根节点 确定。
    5.在回到中序中  左子树部分 BD (B为根)其右子树为D    ;
                右子树部分 CE (根为C)其右子树为E
    如果结点和多的时候判断都是这样递归地进行.
    由上述推得的结果
    得到二叉树的结构图
    -----A
    ----/--
    ---B---C
    ---------
    -----D----E
    得前序为 ABDCE

  • 相关阅读:
    coredump文件设置及调试
    github上传本地代码库步骤
    ubuntu上SVN版本升级到1.7
    ubuntu 上samba创建共享组目录
    linux下创建只有某个用户组可用的文件夹
    usermod -a表示在原来所属组的基础上追加
    linux mount
    Ubuntu Bash and Dash
    svn co 默认密钥' GNOME keyring
    精简版ffmpeg编译脚本
  • 原文地址:https://www.cnblogs.com/lovychen/p/3603115.html
Copyright © 2011-2022 走看看