zoukankan      html  css  js  c++  java
  • LinearRegressionWithRegularization

    在线性回归的基础上加上正则项:

     1 # -*-coding:utf-8 -*-
     2 '''
     3 Created on 2016年12月15日
     4 
     5 @author: lpworkdstudy
     6 '''
     7 import numpy as np
     8 from numpy.core.multiarray import dtype
     9 import matplotlib.pyplot as plt
    10 
    11 
    12 filename = "ex1data1.txt"
    13 alpha = 0.01
    14 
    15 
    16 f = open(filename,"r")
    17 data = []
    18 y = []
    19 for item in f:
    20     item = item.rstrip().split(",")
    21     data.append(item[:-1])
    22     y.append(item[-1:])
    23 Data = np.array(data,dtype= "float64")
    24 Y = np.array(y,dtype = "float64")
    25 Y = (Y-Y.mean())/(Y.max()-Y.min())
    26 One = np.ones(Data.shape[0],dtype = "float64")
    27 Data = np.insert(Data, 0, values=One, axis=1)
    28 for i in range(1,Data.shape[1]):
    29     Data[:,i] = (Data[:,i]-Data[:,i].mean())/(Data[:,i].max()-Data[:,i].min())
    30 theta = np.zeros((1,Data.shape[1]),dtype= "float64")
    31 
    32 def CostFunction(Data,Y,theta):
    33     h = np.dot(Data,theta.T) 
    34     cost = 1/float((2*Data.shape[0]))*(np.sum((h-Y)**2) + np.sum(theta[0,1:]**2) )
    35     return cost
    36 def GradientDescent(Data,Y,theta,alpha):
    37     costList = []
    38     for i in range(100000):
    39         temp = theta[0,0] - (alpha/Data.shape[0]*np.dot(Data[:,:1].T,(np.dot(Data,theta.T)-Y))).T
    40         theta[0,1:] =  (1-alpha/Data.shape[0])*theta[0,1:]- (alpha/Data.shape[0]*np.dot(Data[:,1:].T,(np.dot(Data,theta.T)-Y))).T
    41         theta[0,0] = temp
    42         cost = CostFunction(Data, Y, theta)
    43         costList.append(cost)
    44     plt.figure(1, figsize=(12,10), dpi=80, facecolor="green", edgecolor="black", frameon=True) 
    45     plt.subplot(111)
    46     
    47     plt.plot(range(100000),costList)
    48     plt.xlabel("the no. of iterations")
    49     plt.ylabel("cost Error")  
    50     plt.title("LinearRegression")  
    51     
    52     plt.savefig("LinearRegressionRegularized.png")
    53     return theta
    54 if __name__ == "__main__":
    55     weight = GradientDescent(Data,Y,theta,alpha)
    56     print weight
    57     cost = CostFunction(Data, Y, weight)
    58     print cost

    运行得出损失函数随迭代次数的变化曲线如下图:
    可以看出加入正则项并没有优化我们的模型,反而产生了不好的
    影响,所以我们在解决问题时,不要盲目使用正则化项。
  • 相关阅读:
    简单理解Vue中的nextTick
    vue-router路由元信息及keep-alive组件级缓存
    Webpack配置区分开发环境和生产环境
    理解Vue.mixin,利用Vue.mixin正确的偷懒
    HTML5实现首页动态视频背景
    vue-router钩子函数实现路由守卫
    Vue路由(vue-router)详细讲解指南
    一文轻松搞懂Vuex
    利用HBuilder打包Vue开发的webapp为app
    WPF中剪贴板操作Clipboard
  • 原文地址:https://www.cnblogs.com/lpworkstudyspace1992/p/6184951.html
Copyright © 2011-2022 走看看