在一定范围内按照排列组合方式对rank,iterations,lambda进行交叉评估(根据均方根误差),
找到最小误差的组合,用于建立矩阵分解模型。
Signature:
ALS.train(
ratings,
rank,
iterations=5,
lambda_=0.01,
blocks=-1,
nonnegative=False,
seed=None,
)
Docstring:
Train a matrix factorization model given an RDD of ratings by users
for a subset of products. The ratings matrix is approximated as the
product of two lower-rank matrices of a given rank (number of
features). To solve for these features, ALS is run iteratively with
a configurable level of parallelism.
:param ratings:
RDD of `Rating` or (userID, productID, rating) tuple.
:param rank: #矩阵分解秩
Number of features to use (also referred to as the number of latent factors).
:param iterations: #迭代次数
Number of iterations of ALS.
(default: 5)
:param lambda_: #正则系数
Regularization parameter.
(default: 0.01)
:param blocks:
Number of blocks used to parallelize the computation. A value
of -1 will use an auto-configured number of blocks.
(default: -1)
:param nonnegative:
A value of True will solve least-squares with nonnegativity
constraints.
(default: False)
:param seed:
Random seed for initial matrix factorization model. A value
of None will use system time as the seed.
(default: None)
.. versionadded:: 0.9.0
File: f:anacondalibsite-packagespysparkmllib
ecommendation.py
Type: method