第k大的题一般都有点麻烦
pbds库的tree,需要研究一下
https://codeforces.com/blog/entry/11080
find_by_order() and order_of_key(). The first returns an iterator to the k-th largest element (counting from zero), the second — the number of items in a set that are strictly smaller than our item
用pair<int,int>相当于 multiset
比较的应该是first,(还要再验证一下)
二分答案,然后每次判断中,遍历前缀和Bi,然后查找有多少个j<i ,满足 Bi-Bj>X,也就是有多少个子序列的和是大于X的,即使求有多少个Bj小于【Bi-X】
#include <bits/stdc++.h> #include <bits/extc++.h> using namespace std; using namespace __gnu_pbds; //插入查找都是logn,n次插入,nlogn;最后乘以logmaxans(解的范围) typedef tree<pair<int,int>,null_type,less<pair<int,int>>,rb_tree_tag,tree_order_statistics_node_update> set_t; const int SIZE = 1e6+10; int a[SIZE],s[SIZE]; int main(){ int N,K; while(scanf("%d%d",&N,&K)&&N){ for(int i=1;i<=N;i++){ scanf("%d",&a[i]); s[i]=s[i-1]+a[i]; } int ll=-10000*N,rr=10000*N; //cnt 比guessans大或等的区间和个数(因为加了个1) while(ll<rr){ int guessed_answer=(ll+rr+1)/2; set_t S; int cnt=0; for(int i=0;cnt<=K&&i<=N;i++){ cnt+=S.order_of_key(make_pair(s[i]-guessed_answer+1,0));//返回严格小于给定值的个数 S.insert(make_pair(s[i],i)); } //printf("%d:%d ",guessed_answer,cnt); if(cnt<K)rr=guessed_answer-1; else ll=guessed_answer; } printf("%d ",ll); } return 0; }