更简单的做法:
定义状态dp[i][j]表示在已经用了i根火柴的情况下拼出来了剩余部分(是剩余部分,不是已经拼出来了的)为j(需要%m)的最大长度,一个辅助数组p[i][j]表示状态[i][j]的最高位
是往后添加k
dp[i][j]=max(dp[i][j],dp[i-c[k]][(j*10+k)%m]+1)
(这里应该要证明dp[i-c[k]][(j*10+k)%m]加了d%m=j,没证出来...
倒着枚举k,这样保证位数相同存更大的数
#include<cstdio> #include<cstring> #include<iostream> using namespace std; const int maxn = 105; const int maxm = 3005; // dp[i][j] is the maximal length of the integer whose remainder is j (with at most i matches) // p[i][j] is the maximal digit for state (i,j) int n, m, dp[maxn][maxm], p[maxn][maxm]; int needs[] = { 6, 2, 5, 5, 4, 5, 6, 3, 7, 6 }; int main(){ int kase = 0; while(scanf("%d%d", &n, &m) == 2) { printf("Case %d: ", ++kase); for(int i = 0; i <= n; i++) //dp[i][j]=max(dp[i][j],dp[i-c[k]][(j*10+k)%m]+1) for(int j = 0; j < m; j++){ //注意枚举的是火柴数不是位数 int& ans = dp[i][j]; ans = p[i][j] = -1; if (j == 0) ans = 0; for(int d = 9; d >= 0; d--) if (i >= needs[d]){ int t = dp[i - needs[d]][(j * 10 + d) % m]; if (t >= 0 && t + 1 > ans){ //t exist ans = t + 1; p[i][j] = d; } } } if (p[n][0] < 0) printf("-1"); else { int i = n, j = 0; for(int d = p[i][j]; d >= 0; d = p[i][j]){ printf("%d", d); i -= needs[d]; cout<<"x"<<j<<endl; j = (j * 10 + d) % m; //printf("%d", j); } } printf(" "); } return 0; }