zoukankan      html  css  js  c++  java
  • 调和级数的复杂度

    for (int i = 1;i <= n;i++)
    	for (int j = 1;j <= n/i;j++) ...
    

    是调和级数级别的复杂度,可以由调和级数近似求和公式得到

    (T(n)=nsum_{i=1}^n frac{1}{n}=O(n ln n))

    具体过程如下

    [egin{eqnarray*} && sum_{i=1}^nfrac{1}{i} \ && =sum_{i=1}^nint_i^{i+1}frac{1}{lfloor x floor}dx \ && =int_1^{n+1}frac{1}{x}-frac{1}{x}+frac{1}{lfloor x floor}dx \ && =int_1^{n+1}frac{1}{x}dx+int_1^{n+1}frac{1}{lfloor x floor}-frac{1}{x}dx \ && approx ln(n+1)+gamma end{eqnarray*}]

    其中 (gamma approx 0.5772156649)

  • 相关阅读:
    【leetcode】二叉搜索树的最近公共祖先
    052-12
    052-11
    052-10
    052-9
    052-8
    052-6
    052-5
    052-3
    052-2
  • 原文地址:https://www.cnblogs.com/lrj124/p/15058439.html
Copyright © 2011-2022 走看看