zoukankan      html  css  js  c++  java
  • 查询优化 | MySQL慢查询优化

    ​Explain查询:rows,定位性能瓶颈。

    只需要一行数据时,使用LIMIT1.

    在搜索字段上建立索引。

    使用ENUM而非VARCHAR。

    选择区分度高的列作为索引。

    采用扩展索引,而不是新建索引。

    慢查询日志:log-slow-queries,mysqldumpslow工具。

    避免select *

    尽可能使用NOT NULL

    where中避免索引无效。


     
    《MySQL索引原理及慢查询优化》    http://tech.meituan.com/mysql-index.html
     
    【查询语句的优化】
     
    【如何建立索引?索引的顺序如何?】
     
    【建索引的几大原则】
    1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
    2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
    3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录
    4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’);
    5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
     

    【查询优化神器 - explain命令】
     
    优化语句基本上都是在优化rows
     
    慢查询优化基本步骤
    0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE
    1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高
    2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
    3.order by limit 形式的sql语句让排序的表优先查
    4.了解业务方使用场景
    5.加索引时参照建索引的几大原则
    6.观察结果,不符合预期继续从0分析
     
    几个慢查询案例
    下面几个例子详细解释了如何分析和优化慢查询
     
    复杂语句写法
     
    很多情况下,我们写SQL只是为了实现功能,这只是第一步,不同的语句书写方式对于效率往往有本质的差别,这要求我们对mysql的执行计划和索引原则有非常清楚的认识,请看下面的语句
     
    select
       distinct cert.emp_id 
    from
       cm_log cl 
    inner join
       (
          select
             emp.id as emp_id,
             emp_cert.id as cert_id 
          from
             employee emp 
          left join
             emp_certificate emp_cert 
                on emp.id = emp_cert.emp_id 
          where
             emp.is_deleted=0
       ) cert 
          on (
             cl.ref_table='Employee' 
             and cl.ref_oid= cert.emp_id
          ) 
          or (
             cl.ref_table='EmpCertificate' 
             and cl.ref_oid= cert.cert_id
          ) 
    where
       cl.last_upd_date >='2013-11-07 15:03:00' 
       and cl.last_upd_date<='2013-11-08 16:00:00';
    0.先运行一下,53条记录 1.87秒,又没有用聚合语句,比较慢
     
    53 rows in set (1.87 sec)
    1.explain
     
    +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
    | id | select_type | table      | type  | possible_keys                   | key                   | key_len | ref               | rows  | Extra                          |
    +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
    |  1 | PRIMARY     | cl         | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date     | 8       | NULL              |   379 | Using where; Using temporary   |
    |  1 | PRIMARY     | <derived2> | ALL   | NULL                            | NULL                  | NULL    | NULL              | 63727 | Using where; Using join buffer |
    |  2 | DERIVED     | emp        | ALL   | NULL                            | NULL                  | NULL    | NULL              | 13317 | Using where                    |
    |  2 | DERIVED     | emp_cert   | ref   | emp_certificate_empid           | emp_certificate_empid | 4       | meituanorg.emp.id |     1 | Using index                    |
    +----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
    简述一下执行计划,首先mysql根据idx_last_upd_date索引扫描cm_log表获得379条记录;然后查表扫描了63727条记录,分为两部分,derived表示构造表,也就是不存在的表,可以简单理解成是一个语句形成的结果集,后面的数字表示语句的ID。derived2表示的是ID = 2的查询构造了虚拟表,并且返回了63727条记录。我们再来看看ID = 2的语句究竟做了写什么返回了这么大量的数据,首先全表扫描employee表13317条记录,然后根据索引emp_certificate_empid关联emp_certificate表,rows = 1表示,每个关联都只锁定了一条记录,效率比较高。获得后,再和cm_log的379条记录根据规则关联。从执行过程上可以看出返回了太多的数据,返回的数据绝大部分cm_log都用不到,因为cm_log只锁定了379条记录。
    如何优化呢?可以看到我们在运行完后还是要和cm_log做join,那么我们能不能之前和cm_log做join呢?仔细分析语句不难发现,其基本思想是如果cm_log的ref_table是EmpCertificate就关联emp_certificate表,如果ref_table是Employee就关联employee表,我们完全可以拆成两部分,并用union连接起来,注意这里用union,而不用union all是因为原语句有“distinct”来得到唯一的记录,而union恰好具备了这种功能。如果原语句中没有distinct不需要去重,我们就可以直接使用union all了,因为使用union需要去重的动作,会影响SQL性能。
    优化过的语句如下
     
    select
       emp.id 
    from
       cm_log cl 
    inner join
       employee emp 
          on cl.ref_table = 'Employee' 
          and cl.ref_oid = emp.id  
    where
       cl.last_upd_date >='2013-11-07 15:03:00' 
       and cl.last_upd_date<='2013-11-08 16:00:00' 
       and emp.is_deleted = 0  
    union
    select
       emp.id 
    from
       cm_log cl 
    inner join
       emp_certificate ec 
          on cl.ref_table = 'EmpCertificate' 
          and cl.ref_oid = ec.id  
    inner join
       employee emp 
          on emp.id = ec.emp_id  
    where
       cl.last_upd_date >='2013-11-07 15:03:00' 
       and cl.last_upd_date<='2013-11-08 16:00:00' 
       and emp.is_deleted = 0
    4.不需要了解业务场景,只需要改造的语句和改造之前的语句保持结果一致
     
    5.现有索引可以满足,不需要建索引
     
    6.用改造后的语句实验一下,只需要10ms 降低了近200倍!
     
    +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
    | id | select_type  | table      | type   | possible_keys                   | key               | key_len | ref                   | rows | Extra       |
    +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
    |  1 | PRIMARY      | cl         | range  | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8       | NULL                  |  379 | Using where |
    |  1 | PRIMARY      | emp        | eq_ref | PRIMARY                         | PRIMARY           | 4       | meituanorg.cl.ref_oid |    1 | Using where |
    |  2 | UNION        | cl         | range  | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8       | NULL                  |  379 | Using where |
    |  2 | UNION        | ec         | eq_ref | PRIMARY,emp_certificate_empid   | PRIMARY           | 4       | meituanorg.cl.ref_oid |    1 |             |
    |  2 | UNION        | emp        | eq_ref | PRIMARY                         | PRIMARY           | 4       | meituanorg.ec.emp_id  |    1 | Using where |
    | NULL | UNION RESULT | <union1,2> | ALL    | NULL                            | NULL              | NULL    | NULL                  | NULL |             |
    +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
    53 rows in set (0.01 sec)
    明确应用场景
     
    举这个例子的目的在于颠覆我们对列的区分度的认知,一般上我们认为区分度越高的列,越容易锁定更少的记录,但在一些特殊的情况下,这种理论是有局限性的
     
    select
       * 
    from
       stage_poi sp 
    where
       sp.accurate_result=1 
       and (
          sp.sync_status=0 
          or sp.sync_status=2 
          or sp.sync_status=4
       );
    0.先看看运行多长时间,951条数据6.22秒,真的很慢
     
    951 rows in set (6.22 sec)
    1.先explain,rows达到了361万,type = ALL表明是全表扫描
     
    +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
    | id | select_type | table | type | possible_keys | key  | key_len | ref  | rows    | Extra       |
    +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
    |  1 | SIMPLE      | sp    | ALL  | NULL          | NULL | NULL    | NULL | 3613155 | Using where |
    +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
    2.所有字段都应用查询返回记录数,因为是单表查询 0已经做过了951条
     
    3.让explain的rows 尽量逼近951
     
    看一下accurate_result = 1的记录数
     
    select count(*),accurate_result from stage_poi  group by accurate_result;
    +----------+-----------------+
    | count(*) | accurate_result |
    +----------+-----------------+
    |     1023 |              -1 |
    |  2114655 |               0 |
    |   972815 |               1 |
    +----------+-----------------+
    我们看到accurate_result这个字段的区分度非常低,整个表只有-1,0,1三个值,加上索引也无法锁定特别少量的数据
     
    再看一下sync_status字段的情况
     
    select count(*),sync_status from stage_poi  group by sync_status;
    +----------+-------------+
    | count(*) | sync_status |
    +----------+-------------+
    |     3080 |           0 |
    |  3085413 |           3 |
    +----------+-------------+
    同样的区分度也很低,根据理论,也不适合建立索引
     
    问题分析到这,好像得出了这个表无法优化的结论,两个列的区分度都很低,即便加上索引也只能适应这种情况,很难做普遍性的优化,比如当sync_status 0、3分布的很平均,那么锁定记录也是百万级别的
     
    4.找业务方去沟通,看看使用场景。业务方是这么来使用这个SQL语句的,每隔五分钟会扫描符合条件的数据,处理完成后把sync_status这个字段变成1,五分钟符合条件的记录数并不会太多,1000个左右。了解了业务方的使用场景后,优化这个SQL就变得简单了,因为业务方保证了数据的不平衡,如果加上索引可以过滤掉绝大部分不需要的数据
     
    5.根据建立索引规则,使用如下语句建立索引
     
    alter table stage_poi add index idx_acc_status(accurate_result,sync_status);
    6.观察预期结果,发现只需要200ms,快了30多倍。
     
    952 rows in set (0.20 sec)
    我们再来回顾一下分析问题的过程,单表查询相对来说比较好优化,大部分时候只需要把where条件里面的字段依照规则加上索引就好,如果只是这种“无脑”优化的话,显然一些区分度非常低的列,不应该加索引的列也会被加上索引,这样会对插入、更新性能造成严重的影响,同时也有可能影响其它的查询语句。所以我们第4步调差SQL的使用场景非常关键,我们只有知道这个业务场景,才能更好地辅助我们更好的分析和优化查询语句。
     
    无法优化的语句
     
    select
       c.id,
       c.name,
       c.position,
       c.sex,
       c.phone,
       c.office_phone,
       c.feature_info,
       c.birthday,
       c.creator_id,
       c.is_keyperson,
       c.giveup_reason,
       c.status,
       c.data_source,
       from_unixtime(c.created_time) as created_time,
       from_unixtime(c.last_modified) as last_modified,
       c.last_modified_user_id  
    from
       contact c  
    inner join
       contact_branch cb 
          on  c.id = cb.contact_id  
    inner join
       branch_user bu 
          on  cb.branch_id = bu.branch_id 
          and bu.status in (
             1,
          2)  
       inner join
          org_emp_info oei 
             on  oei.data_id = bu.user_id 
             and oei.node_left >= 2875 
             and oei.node_right <= 10802 
             and oei.org_category = - 1  
       order by
          c.created_time desc  limit 0 ,
          10;
    还是几个步骤
    0.先看语句运行多长时间,10条记录用了13秒,已经不可忍受
     
    10 rows in set (13.06 sec)
    1.explain
     
    +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
    | id | select_type | table | type   | possible_keys                       | key                     | key_len | ref                      | rows | Extra                                        |
    +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
    |  1 | SIMPLE      | oei   | ref    | idx_category_left_right,idx_data_id | idx_category_left_right | 5       | const                    | 8849 | Using where; Using temporary; Using filesort |
    |  1 | SIMPLE      | bu    | ref    | PRIMARY,idx_userid_status           | idx_userid_status       | 4       | meituancrm.oei.data_id   |   76 | Using where; Using index                     |
    |  1 | SIMPLE      | cb    | ref    | idx_branch_id,idx_contact_branch_id | idx_branch_id           | 4       | meituancrm.bu.branch_id  |    1 |                                              |
    |  1 | SIMPLE      | c     | eq_ref | PRIMARY                             | PRIMARY                 | 108     | meituancrm.cb.contact_id |    1 |                                              |
    +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
    从执行计划上看,mysql先查org_emp_info表扫描8849记录,再用索引idx_userid_status关联branch_user表,再用索引idx_branch_id关联contact_branch表,最后主键关联contact表。
    rows返回的都非常少,看不到有什么异常情况。我们在看一下语句,发现后面有order by + limit组合,会不会是排序量太大搞的?于是我们简化SQL,去掉后面的order by 和 limit,看看到底用了多少记录来排序
     
    select
      count(*)
    from
       contact c  
    inner join
       contact_branch cb 
          on  c.id = cb.contact_id  
    inner join
       branch_user bu 
          on  cb.branch_id = bu.branch_id 
          and bu.status in (
             1,
          2)  
       inner join
          org_emp_info oei 
             on  oei.data_id = bu.user_id 
             and oei.node_left >= 2875 
             and oei.node_right <= 10802 
             and oei.org_category = - 1  
    +----------+
    | count(*) |
    +----------+
    |   778878 |
    +----------+
    1 row in set (5.19 sec)
    发现排序之前居然锁定了778878条记录,如果针对70万的结果集排序,将是灾难性的,怪不得这么慢,那我们能不能换个思路,先根据contact的created_time排序,再来join会不会比较快呢?
    于是改造成下面的语句,也可以用straight_join来优化
    select
    c.id,
    c.name,
    c.position,
    c.sex,
    c.phone,
    c.office_phone,
    c.feature_info,
    c.birthday,
    c.creator_id,
    c.is_keyperson,
    c.giveup_reason,
    c.status,
    c.data_source,
    from_unixtime(c.created_time) as created_time,
    from_unixtime(c.last_modified) as last_modified,
    c.last_modified_user_id
    from
    contact c
    where
    exists (
    select
    1
    from
    contact_branch cb
    inner join
    branch_user bu
    on cb.branch_id = bu.branch_id
    and bu.status in (
    1,
    2)
    inner join
    org_emp_info oei
    on oei.data_id = bu.user_id
    and oei.node_left >= 2875
    and oei.node_right <= 10802
    and oei.org_category = - 1
    where
    c.id = cb.contact_id
    )
    order by
    c.created_time desc limit 0 ,
    10;
     
    验证一下效果 预计在1ms内,提升了13000多倍!
    ```sql
    10 rows in set (0.00 sec)
    本以为至此大工告成,但我们在前面的分析中漏了一个细节,先排序再join和先join再排序理论上开销是一样的,为何提升这么多是因为有一个limit!大致执行过程是:mysql先按索引排序得到前10条记录,然后再去join过滤,当发现不够10条的时候,再次去10条,再次join,这显然在内层join过滤的数据非常多的时候,将是灾难的,极端情况,内层一条数据都找不到,mysql还傻乎乎的每次取10条,几乎遍历了这个数据表!
    用不同参数的SQL试验下
     
    select
       sql_no_cache   c.id,
       c.name,
       c.position,
       c.sex,
       c.phone,
       c.office_phone,
       c.feature_info,
       c.birthday,
       c.creator_id,
       c.is_keyperson,
       c.giveup_reason,
       c.status,
       c.data_source,
       from_unixtime(c.created_time) as created_time,
       from_unixtime(c.last_modified) as last_modified,
       c.last_modified_user_id    
    from
       contact c   
    where
       exists (
          select
             1        
          from
             contact_branch cb         
          inner join
             branch_user bu                     
                on  cb.branch_id = bu.branch_id                     
                and bu.status in (
                   1,
                2)                
             inner join
                org_emp_info oei                           
                   on  oei.data_id = bu.user_id                           
                   and oei.node_left >= 2875                           
                   and oei.node_right <= 2875                           
                   and oei.org_category = - 1                
             where
                c.id = cb.contact_id           
          )        
       order by
          c.created_time desc  limit 0 ,
          10;
    Empty set (2 min 18.99 sec)
    2 min 18.99 sec!比之前的情况还糟糕很多。由于mysql的nested loop机制,遇到这种情况,基本是无法优化的。这条语句最终也只能交给应用系统去优化自己的逻辑了。
    通过这个例子我们可以看到,并不是所有语句都能优化,而往往我们优化时,由于SQL用例回归时落掉一些极端情况,会造成比原来还严重的后果。所以,第一:不要指望所有语句都能通过SQL优化,第二:不要过于自信,只针对具体case来优化,而忽略了更复杂的情况。
     
    慢查询的案例就分析到这儿,以上只是一些比较典型的案例。我们在优化过程中遇到过超过1000行,涉及到16个表join的“垃圾SQL”,也遇到过线上线下数据库差异导致应用直接被慢查询拖死,也遇到过varchar等值比较没有写单引号,还遇到过笛卡尔积查询直接把从库搞死。再多的案例其实也只是一些经验的积累,如果我们熟悉查询优化器、索引的内部原理,那么分析这些案例就变得特别简单了。
     
    写在后面的话
    本文以一个慢查询案例引入了MySQL索引原理、优化慢查询的一些方法论;并针对遇到的典型案例做了详细的分析。其实做了这么长时间的语句优化后才发现,任何数据库层面的优化都抵不上应用系统的优化,同样是MySQL,可以用来支撑Google/FaceBook/Taobao应用,但可能连你的个人网站都撑不住。套用最近比较流行的话:“查询容易,优化不易,且写且珍惜!”
     
     
  • 相关阅读:
    屏幕截图 从安卓模拟器中识别出屏幕文字
    srcset
    Bitwise and Bit Shift Operators 位运算 取反 补码
    text recognizer (OCR) Engine 光学字符识别
    删除目录下 某类名字的文件
    appmaptile
    登录框
    将代码设置的剪切板内容通过输入法软件粘贴入app搜索框
    面向问题的高级语言
    使用心理视觉来进行图像处理
  • 原文地址:https://www.cnblogs.com/lsx1993/p/4793148.html
Copyright © 2011-2022 走看看