HashMap
概念:key-value键值对,非线程安全,key可以为空,无序
底层:jdk1.7 数组+链表 jdk1.8数组+链表+红黑树
由来:数组的查找速度很快,但是插入和删除效率很低
链表的插入和删除的效率很低,但是查找速度很慢
HashMap,其查找速度近似O(1)。如何实现:使用了hash算法,将key映射成数组(桶bucket)下标。
key-hashCode-hash-i
如何解决hash碰撞(hash冲突)
- 增加扰动函数,减少冲突
- 冲突时,使用链地址法
源码学习
一些常量
/** * The default initial capacity - MUST be a power of two. */ //默认容量 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 /** * The maximum capacity, used if a higher value is implicitly specified * by either of the constructors with arguments. * MUST be a power of two <= 1<<30. */ //最大容量 static final int MAXIMUM_CAPACITY = 1 << 30; /** * The load factor used when none specified in constructor. */ //默认负载因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * The bin count threshold for using a tree rather than list for a * bin. Bins are converted to trees when adding an element to a * bin with at least this many nodes. The value must be greater * than 2 and should be at least 8 to mesh with assumptions in * tree removal about conversion back to plain bins upon * shrinkage. */ //当链表长度大于8时,对链表进行树化 static final int TREEIFY_THRESHOLD = 8; /** * The bin count threshold for untreeifying a (split) bin during a * resize operation. Should be less than TREEIFY_THRESHOLD, and at * most 6 to mesh with shrinkage detection under removal. */ //当红黑树长度小于6时,将树转换为链表 static final int UNTREEIFY_THRESHOLD = 6; /** * The smallest table capacity for which bins may be treeified. * (Otherwise the table is resized if too many nodes in a bin.) * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts * between resizing and treeification thresholds. */ // 链表树化时,hashmap的容量必须大于64 static final int MIN_TREEIFY_CAPACITY = 64;/
hash函数
取key的hascCode,将低16位与高16位异或(相同为0,不同为1),增加hash的随机性,减少hash冲突,使key分布的更均匀
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
tableSizeFor
扩容时,计算hashMap容量的方法,计算hashmap的最小容量,hashmap的容量比为2的n次方
16-16
15-16
/** * Returns a power of two size for the given target capacity. */ static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
hashMap的内部变量
/** * The table, initialized on first use, and resized as * necessary. When allocated, length is always a power of two. * (We also tolerate length zero in some operations to allow * bootstrapping mechanics that are currently not needed.) */
//内部维护一个数组table,称作桶bucket。注意:不是所有元素都在table,存的是所有链表的头结点 transient Node<K,V>[] table; /** * Holds cached entrySet(). Note that AbstractMap fields are used * for keySet() and values(). */
//所有元素 transient Set<Map.Entry<K,V>> entrySet; /** * The number of key-value mappings contained in this map. */
// hashMap的长度,区别与容量 transient int size; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ transient int modCount; /** * The next size value at which to resize (capacity * load factor). * * @serial */ // (The javadoc description is true upon serialization. // Additionally, if the table array has not been allocated, this // field holds the initial array capacity, or zero signifying // DEFAULT_INITIAL_CAPACITY.) int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor;
hashMap的构造函数
典型的3个
- 指定容量和负载因子,阈值=大于容量的最小2的n次方
- 指定容量,负载因子=0.75f,阈值=大于容量的最小2的n次方
- 默认构造函数,负载因子=0.75。容量和阈值未初始化
/** * Constructs an empty <tt>HashMap</tt> with the specified initial * capacity and load factor. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } /** * Constructs an empty <tt>HashMap</tt> with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs an empty <tt>HashMap</tt> with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted }
根据key获取元素
tab[(n - 1) & hash通过hash计算元素在桶中的位置,比如容量n=16
hash = 1=>i=1
hash = 15=>i=15
hash = 16=>i=0
hash = 17=>i=1
first = tab[(n - 1) & hash = hash mod n
与操作效率大于mod操作,一个很小的优化
public V get(Object key) { Node<K,V> e;
//计算key的hash值 //根据key的hash值去table上遍历
return (e = getNode(hash(key), key)) == null ? null : e.value; } /** * Implements Map.get and related methods * * @param hash hash for key * @param key the key * @return the node, or null if none */ final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && //如果桶的第一元素的hash和key等于查找的元素,则返回 (first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; //查找桶的下一个元素 if ((e = first.next) != null) { //first为树结构 if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); do { //first为链表,则查找链表 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
插入元素
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } /** * Implements Map.put and related methods * * @param hash hash for key * @param key the key * @param value the value to put * @param onlyIfAbsent if true, don't change existing value * @param evict if false, the table is in creation mode. * @return previous value, or null if none */ final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i;
//table为空,或者table长度为0,扩容 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; //桶元素(数组上的第一个元素)为空,则直接新建一个Node并赋值到数组上 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; //第一个元素不为空,但是hash和key值和插入元素相等,此时将第一个元素赋值给e if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; //第一个元素不为空,发生hash冲突,且第一个元素为树节点,此时将p节点插入到红黑树 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { //第一个元素不为空,发生hash冲突,且第一个元素为链表节点,此时将p节点插入到链表 for (int binCount = 0; ; ++binCount) { //不同于jdk1.7,这里使用尾插法,将p插入到链表的最后一个节点 if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); //如果插入后,链表的长度>8(包括桶元素),则对链表进行树化 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } //如果再链表中找到和插入元素相等的节点,则直接跳出循环 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } //插入节点的Key在hashMap中已存在,则更新value if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; //如果插入节点后,hashmap的容量大于阈值(13>12),则扩容 if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
扩容
关于resize链表扩容的博客,写的很详细
jdk1.8 HashMap工作原理和扩容机制(源码解析)
/** * Initializes or doubles table size. If null, allocates in * accord with initial capacity target held in field threshold. * Otherwise, because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * * @return the table */ final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; // oldCap>0,表示hashMap已经初始化了,这里是二次扩容 if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } //newCap和newThr都*2 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } //使用了初始化容量的构造器 else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults //使用了默认构造函数,此时newCap和newThr都取默认值 newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } //使用了初始化容量的构造器,阈值newThr=容量*loadFactor if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; //初始化一个长度为newCap的数组newTab @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { //将oldTab中的元素移植到newTab中 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
删除节点
/** * Implements Map.remove and related methods * * @param hash hash for key * @param key the key * @param value the value to match if matchValue, else ignored * @param matchValue if true only remove if value is equal * @param movable if false do not move other nodes while removing * @return the node, or null if none */ final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<K,V> node = null, e; K k; V v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) //删除节点是桶节点,将node节点指向该节点 node = p; else if ((e = p.next) != null) { //删除的节点是树节点 if (p instanceof TreeNode) node = ((TreeNode<K,V>)p).getTreeNode(hash, key); else { //删除节点是链表中的某一个节点,将node系诶单你指向该节点 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { //删除的节点是树节点 if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); //删除的节点是桶节点,将桶节点指向node节点的next节点 else if (node == p) tab[index] = node.next; else //删除节点是链表的某个节点 //将删除节点的父节点指向node节点的next节点 p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null; }