zoukankan      html  css  js  c++  java
  • 决策树预测活动类型

    import os
    import csv
    import random
    import numpy as np
    import pandas as pd
    from sklearn.cross_validation import cross_val_score
    os.chdir('E:\HumanActivity')
    #加载数据  
    data=pd.read_csv('test.csv',sep=',')
    print(data.ix[:5])
    #决策树预测活动类型
    from sklearn.tree import DecisionTreeClassifier
    clf = DecisionTreeClassifier(random_state=14) 
    x_previous = data[['timestamp','x','y','z']].values
    y_true = data['act_num'].values
    scores = cross_val_score(clf,x_previous,y_true,scoring='accuracy')
    print("决策树预测准确率: {0:1f}%".format(np.mean(scores) * 100))

    预测结果:

    决策树预测准确率: 40.238367%

    随机森林算法:

    from sklearn.ensemble import RandomForestClassifier
    clf = RandomForestClassifier(random_state=14)
    x_test = data[['timestamp','x','y','z']].values
    scores = cross_val_score(clf,x_test,y_true,scoring='accuracy')
    print("随机森林预测准确率: {0:1f}%".format(np.mean(scores) * 100))

    预测结果:

    随机森林预测准确率: 46.861539%

  • 相关阅读:
    测试
    mysql数据库 select语句全集
    Markdown文本的书写格式详解--有道云笔记
    mysql数据忘记库密码
    最新版mysql基本命令操作
    Python从入门到放弃
    第二阶段冲刺
    周总结15
    找水王
    用户体验评价
  • 原文地址:https://www.cnblogs.com/luban/p/9133884.html
Copyright © 2011-2022 走看看