zoukankan      html  css  js  c++  java
  • SCAFFOLD: Stochastic Controlled Averaging for On-Device Federated Learning

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文。

    arXiv:1910.06378v1 [cs.LG] 14 Oct 2019

    Abstract

      联邦学习是现代大规模机器学习中的一个关键场景。在这种情况下,训练数据仍然分布在大量的客户机上,这些客户机可能是电话、其他移动设备或网络传感器,并且在不通过网络传输客户机数据的情况下学习集中式模型。此方案中使用的标准优化算法是联邦平均(FedAvg)。然而,当客户端数据是异质的(这在应用程序中是典型的)时,FedAvg并不能保证良好的收敛性。这是因为客户机上的本地更新可能会发散开来,这也解释了FedAvg在实践中的缓慢收敛和难以调整的特性。本文提出了一种新的随机控制平均算法(SCAFFOLD),该算法利用控制变量来减少不同客户之间的漂移。我们证明了该算法需要的通信次数明显减少,并且有良好的收敛性保证。

     

    1. Introduction

      在现代大规模应用程序中起关键作用的学习场景是联邦学习。与标准设置不同,标准设置使用存储在中央服务器中的大型数据集训练模型(Dean et al., 2012; Iandola et al., 2016; Goyal et al., 2017),在联邦学习中,训练数据仍然分布在大量客户机上,这些客户机可能是电话、其他移动设备、网络传感器或其他本地信息源(Konečn`y et al., 2016b,a; McMahan et al., 2017b; Mohri et al., 2019)。在不通过网络传输客户端数据的情况下,对集中式模型进行学习,从而确保了基本的隐私级别并限制了网络通信。

      这种集中式模型受益于所有客户机数据,通常可以带来更优的性能,如在多个任务中所报告的,包括下一个单词预测(Hard et al., 2018; Yang et al., 2018),emoji预测(Ramaswamy et al., 2019),解码模型(Chen et al.,2019b),词汇估计(Chen et al., 2019a),低延迟车对车通信(Samarakoon et al., 2018)和健康预测模型(Brisimi et al., 2018)。尽管如此,联邦学习提出了几种类型的问题,并已成为多个研究工作的主题,研究该场景中的学习和泛化特性(Mohri et al., 2019),系统、网络和通信瓶颈问题,这些问题是由于中央服务器和客户机之间频繁的交换造成的,具有不可靠或相对较慢的网络连接(McMahan et al., 2017a)和许多其他连接。

      本文讨论了联邦学习中优化任务的关键问题,特别是设计一个具有收敛性保证的高效优化解的关键问题。联邦学习中的优化问题一直是众多研究工作的主题。包括设计更有效的沟通策略(Konečn`y et al., 2016b,a; Suresh et al., 2017; Stich et al., 2018; Karimireddy et al., 2019; Basu et al., 2019),具有依赖图的并行随机优化的下界研究(Woodworth et al., 2018b),利用差异隐私保证设计高效的分布式优化方法(Agarwal et al., 2018),不可知公式的随机优化解决方案(Mohri et al.,2019),以及结合密码技术(Bonawitz et al.,2017),参见(Li et al.,2019a)以深入了解联邦学习的最新工作。

      联邦学习的训练通常包括交替的通讯和本地更新。在每一轮中,客户机的子集被采样,每个采样的客户机接收共享的全局模型。然后,客户机对该模型执行本地更新,仅涉及其本地训练数据。然后,在回合结束时,采样的客户机将其更新发送到服务器,服务器聚合更新以形成新的全局模型。区分联邦学习和并行或分布式训练的关键有三个方面:(1)不同客户机上的数据以及损失函数可能非常异质,这远远不能代表联合数据;(2)只有中央服务器选择的设备的一小部分参与每一轮;(3)服务器从不跟踪任何单个客户端信息,只使用聚合来确保隐私。

  • 相关阅读:
    hdu 2019 数列有序!
    hdu 2023 求平均成绩
    HDU 5805 NanoApe Loves Sequence (思维题) BestCoder Round #86 1002
    51nod 1264 线段相交
    Gym 100801A Alex Origami Squares (求正方形边长)
    HDU 5512 Pagodas (gcd)
    HDU 5510 Bazinga (字符串匹配)
    UVALive 7269 Snake Carpet (构造)
    UVALive 7270 Osu! Master (阅读理解题)
    UVALive 7267 Mysterious Antiques in Sackler Museum (判断长方形)
  • 原文地址:https://www.cnblogs.com/lucifer1997/p/11838534.html
Copyright © 2011-2022 走看看