zoukankan      html  css  js  c++  java
  • Braininspired globallocal hybrid learning towards humanlike intelligence

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布!

    Arxiv

    Abstract

      面向神经科学和面向计算机科学的方法的结合是开发可以学习类似于人类的一般任务的通用人工智能(AGI)的最有前途的方法。目前,存在两种主要的学习途径,包括以局部突触可塑性为代表的受神经科学启发的方法,以及以反向传播为代表的机器学习方法。两者各有千秋,相得益彰,但都不能很好地解决所有的学习问题。将这两种方法集成到一个网络中可以为一般任务提供更好的学习能力。在此,我们报告了一种基于脉冲的混合学习模型,该模型通过引入元局部模块和两阶段因果关系建模方法来集成这两种方法。该模型不仅可以优化局部可塑性规则,还可以接收自上而下的监督信息。除了灵活支持多种基于脉冲的编码方案外,我们还证明了该模型有助于学习许多通用任务,包括容错学习、小样本学习和多任务学习,并在天机神经形态平台上展示其效率。这项工作为类脑计算提供了一条新途径,并促进了AGI的发展。

  • 相关阅读:
    Parquet 格式文件
    spark DataFrame 常见操作
    scala 资料集结
    scala 基础知识总结
    python 玩具代码
    大数据常见错误解决方案(转载)
    scala 基础到高阶
    win8.1简单快速安装phpnow的方法
    如何搭建本地WordPress
    Delphi Code Editor 之 几个特性(转)
  • 原文地址:https://www.cnblogs.com/lucifer1997/p/15524941.html
Copyright © 2011-2022 走看看