zoukankan      html  css  js  c++  java
  • HDU1159-Common Subsequence

    描述:

      A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 

      The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by anynumber of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 

    代码:

      设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk} ,则

        (1)若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。

        (2)若xm≠yn且zk≠xm,则Z是xm-1和Y的最长公共子序列。

        (3)若xm≠yn且zk≠yn,则Z是X和yn-1的最长公共子序列。

    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<stdlib.h>
    #include <math.h>
    using namespace std;
    #define N 1000
    
    int main(){
        char x[N],y[N];
        int dp[N][N];
        while ( scanf("%s%s",&x,&y)!=EOF ){
            //TLE:memset(dp,0,sizeof(dp));
            for( int i=0;i<N;i++ ){
                dp[0][i]=0;dp[i][0]=0;
            }
    
            for( int i=1;i<=strlen(x);i++ ){
                for( int j=1;j<=strlen(y);j++ ){
                    if( x[i-1]==y[j-1] )
                        dp[i][j]=dp[i-1][j-1]+1;
                    else
                        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                }
            }
            printf("%d
    ",dp[strlen(x)][strlen(y)]);
        }
        system("pause");
        return 0;
    }
  • 相关阅读:
    数据分析英国电商——数据分析可视化
    数据分析英国电商——数据预处理部分
    特征工程入门与实践—3 特征增强
    特征工程入门与实践—2 特征理解
    特征工程入门与实践 —1 特征工程简介
    正则表达式匹配
    linux学习笔记
    python深度学习基础
    Linux命令小记1
    AWS S3操作命令
  • 原文地址:https://www.cnblogs.com/lucio_yz/p/4749036.html
Copyright © 2011-2022 走看看