zoukankan      html  css  js  c++  java
  • HDU1159-Common Subsequence

    描述:

      A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 

      The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by anynumber of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 

    代码:

      设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk} ,则

        (1)若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。

        (2)若xm≠yn且zk≠xm,则Z是xm-1和Y的最长公共子序列。

        (3)若xm≠yn且zk≠yn,则Z是X和yn-1的最长公共子序列。

    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<stdlib.h>
    #include <math.h>
    using namespace std;
    #define N 1000
    
    int main(){
        char x[N],y[N];
        int dp[N][N];
        while ( scanf("%s%s",&x,&y)!=EOF ){
            //TLE:memset(dp,0,sizeof(dp));
            for( int i=0;i<N;i++ ){
                dp[0][i]=0;dp[i][0]=0;
            }
    
            for( int i=1;i<=strlen(x);i++ ){
                for( int j=1;j<=strlen(y);j++ ){
                    if( x[i-1]==y[j-1] )
                        dp[i][j]=dp[i-1][j-1]+1;
                    else
                        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                }
            }
            printf("%d
    ",dp[strlen(x)][strlen(y)]);
        }
        system("pause");
        return 0;
    }
  • 相关阅读:
    MongoDB 创建账户
    MongoDB高可用集群配置方案
    学习CEGUI亟待解决问题一:文本控件的格式问题
    第一讲
    ERP初阶(三):MRP基本原理
    ERP初阶(四):MRP基本构成
    学习CEGUI亟待解决问题二:消息事件传递机制问题
    Groovy处理null对象为空字符串
    silverlight与CSLA的快速应用05安装CslaExtension
    silverlight与CSLA的快速应用08客户端的CSLA代码
  • 原文地址:https://www.cnblogs.com/lucio_yz/p/4749036.html
Copyright © 2011-2022 走看看