zoukankan      html  css  js  c++  java
  • 8. pytorch 快速搭建、训练一个小型网络

      本篇博客中,我将快速搭建一个小型的网络,并对其进行训练、优化器调参,最后查看模型训练效果。
    我将本次搭建网络分为一下几个部分

    1. 下载、读取数据
    2. 搭建网络
    3. 准备日志、损失函数和优化器
    4. 进行网络的训练与测试,
    5. 模型文件的保存
    6. 关闭日志并查看训练效果

    下载读取数据

    本篇博客所写代码使用 python,并且大量使用了 pytorch 第三方库,其中的 torvision.datasets.CIFAR10() 用于读取数据,torch.utils.data.DataLoader()用于封装遍历数据,倘若对这两种函数不熟悉的同学,可以看我前几篇博客。

    # load the data and set the constant values
    dataset_path = "../data_cifar10"
    dataset_train = torchvision.datasets.CIFAR10(root=dataset_path, train=True, transform=torchvision.transforms.ToTensor(),
                                                 download=True)
    dataset_test = torchvision.datasets.CIFAR10(root=dataset_path, train=False, transform=torchvision.transforms.ToTensor(),
                                                download=True)
    
    dataloader_train = DataLoader(dataset=dataset_train, batch_size=64)
    dataloader_test = DataLoader(dataset=dataset_test, batch_size=64)
    
    dataset_train_len = len(dataset_train)
    dataset_test_len = len(dataset_test)
    

    搭建网络

    搭建网络的内容在前几篇博客已经写过了,不熟悉的同学请自行查看。


    import torch
    import torch.nn as nn
    
    
    class MyModel(nn.Module):
        def __init__(self):
            super(MyModel, self).__init__()
            self.model = nn.Sequential(
                nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
                nn.MaxPool2d(2),
                nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
                nn.MaxPool2d(2),
                nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
                nn.MaxPool2d(kernel_size=2),
                nn.Flatten(start_dim=1, end_dim=-1),
                nn.Linear(in_features=1024, out_features=64),
                nn.Linear(in_features=64, out_features=10)
            )
    
        def forward(self, x):
            return self.model(x)
    
    
    if __name__ == "__main__":
        test_data = torch.ones((64, 3, 32, 32))
        my_model = MyModel()
        data_proceed = my_model(test_data)
        print(data_proceed.shape)
    

    准备日志、损失函数和优化器

    网络搭建完成之后,我们实例化网络,并打开日志 SummaryWriter,准备好损失函数(交叉熵损失函数)和优化器(SGD),该部分也包括了设置一些常量

    # define the net and constant
    my_model = MyModel()
    learning_rate = 1e-2
    my_optimize = torch.optim.SGD(my_model.parameters(), lr=learning_rate)
    my_loss_fn = torch.nn.CrossEntropyLoss()
    train_step = 0
    test_step = 0
    max_epoch = 100
    writer = SummaryWriter("./logs")
    

    网络的训练和测试

    网络的训练过程时,训练前加入 my_model.train(),测试前加入 my_model.test()
    因为前几篇博客并没有讲到 train()eval()函数,这里我贴一下官方帮助文档的翻译:



    还望注意一下 train 和 test 的区别,是否会 optim.zero_grad(),损失函数数值backward(),和 optim.step()

    # begin training and testing
    for epoch in range(max_epoch):
        print("-------The {} Epoch is Running!-------".format(epoch))
    
        # train the data
        my_model.train()
        train_sum_loss = 0
        for images, targets in dataloader_train:
            outputs = my_model(images)
            train_loss = my_loss_fn(outputs, targets)
            train_sum_loss += train_loss.item()
            if train_step % 100 == 0:
                print(f"train {epoch}, step:{train_step}, train_loss{train_loss}")
            my_optimize.zero_grad()
            train_loss.backward()
            my_optimize.step()
    
            train_step += 1
    
        print(f"train {epoch}, train_epoch_loss{train_sum_loss}")
        writer.add_scalar("train epoch loss", train_sum_loss, epoch)
    
        # test the data
        my_model.eval()
        with torch.no_grad():
            test_sum_loss = 0
            predict_right_cnt = 0
            for images, targets in dataloader_test:
                output = my_model(images)
                test_loss = my_loss_fn(output, targets)
                test_sum_loss += test_loss.item()
                predict_right_cnt += (torch.argmax(output, dim=1) == targets).sum()
    
        writer.add_scalar(f"predict right rate", predict_right_cnt / dataset_test_len, epoch)
        print(f"test {epoch}, test_epoch_loss{test_sum_loss}")
        writer.add_scalar("test epoch loss", test_sum_loss, epoch)
    

    模型文件的保存

    之前的博客讲过模型保存的两种方式,这里采取官方推荐的第二种

        # save the model!!!!!!!
        torch.save(my_model.state_dict(), f"./project_models/train_model_1_{epoch}.pth")
    

    关闭日志并查看训练效果

    writer.close() # 关闭日志
    

    因为 没有进行 dropout,感觉训练的有一点过拟合了我去。。。




    完整的代码

    项目结构


    main.py,主文件

    import torch
    import torchvision
    import torch.nn as nn
    from torch.utils.data import DataLoader
    from torch.utils.tensorboard import SummaryWriter
    
    # load the data and set the constant values
    dataset_path = "../data_cifar10"
    dataset_train = torchvision.datasets.CIFAR10(root=dataset_path, train=True, transform=torchvision.transforms.ToTensor(),
                                                 download=True)
    dataset_test = torchvision.datasets.CIFAR10(root=dataset_path, train=False, transform=torchvision.transforms.ToTensor(),
                                                download=True)
    
    dataloader_train = DataLoader(dataset=dataset_train, batch_size=64)
    dataloader_test = DataLoader(dataset=dataset_test, batch_size=64)
    
    dataset_train_len = len(dataset_train)
    dataset_test_len = len(dataset_test)
    
    
    class MyModel(nn.Module):
        def __init__(self):
            super(MyModel, self).__init__()
            self.model = nn.Sequential(
                nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
                nn.MaxPool2d(2),
                nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
                nn.MaxPool2d(2),
                nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
                nn.MaxPool2d(kernel_size=2),
                nn.Flatten(start_dim=1, end_dim=-1),
                nn.Linear(in_features=1024, out_features=64),
                nn.Linear(in_features=64, out_features=10)
            )
    
        def forward(self, x):
            return self.model(x)
    
    
    # define the net and constant
    my_model = MyModel()
    learning_rate = 1e-2
    my_optimize = torch.optim.SGD(my_model.parameters(), lr=learning_rate)
    my_loss_fn = torch.nn.CrossEntropyLoss()
    train_step = 0
    test_step = 0
    max_epoch = 100
    writer = SummaryWriter("./logs")
    
    # begin training and testing
    for epoch in range(max_epoch):
        print("-------The {} Epoch is Running!-------".format(epoch))
    
        # train the data
        my_model.train()
        train_sum_loss = 0
        for images, targets in dataloader_train:
            outputs = my_model(images)
            train_loss = my_loss_fn(outputs, targets)
            train_sum_loss += train_loss.item()
            if train_step % 100 == 0:
                print(f"train {epoch}, step:{train_step}, train_loss{train_loss}")
            my_optimize.zero_grad()
            train_loss.backward()
            my_optimize.step()
    
            train_step += 1
    
        print(f"train {epoch}, train_epoch_loss{train_sum_loss}")
        writer.add_scalar("train epoch loss", train_sum_loss, epoch)
    
        # test the data
        my_model.eval()
        with torch.no_grad():
            test_sum_loss = 0
            predict_right_cnt = 0
            for images, targets in dataloader_test:
                output = my_model(images)
                test_loss = my_loss_fn(output, targets)
                test_sum_loss += test_loss.item()
                predict_right_cnt += (torch.argmax(output, dim=1) == targets).sum()
    
        writer.add_scalar(f"predict right rate", predict_right_cnt / dataset_test_len, epoch)
        print(f"test {epoch}, test_epoch_loss{test_sum_loss}")
        writer.add_scalar("test epoch loss", test_sum_loss, epoch)
    
        # save the model!!!!!!!
        torch.save(my_model.state_dict(), f"./project_models/train_model_2_{epoch}.pth")
    
    writer.close()
    

    注意事项

    1. train 和 test 过程中,有着较大的区别,首先是 optim 是否 zero_grad(),loss是否进行backward(),optim 是否step()。
    2. train 和 test 过程中,还应该注意模式的设置, my_model.train() 和 my_model.eval() 是选择不同的模式
    3. test 过程中,为了减少硬件负担,提高运算速度,我们往往还会 加上 with torch.no_grad(),左右如下所示:



    Author:luckylight(xyg)
    Date:2021/11/13
  • 相关阅读:
    ajax发送cookies
    关于几个入口
    关于.net的概念
    codeproject
    Chrome extension
    modern web application
    JavaScript类型转换
    js方法在iframe父子窗口
    javascript book
    MVC Controller
  • 原文地址:https://www.cnblogs.com/lucky-light/p/15548360.html
Copyright © 2011-2022 走看看