Cat VS Dog
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)
Problem Description
The zoo have N cats and M dogs, today there are P children visiting the zoo, each child has a like-animal and a dislike-animal, if the child’s like-animal is a cat, then his/hers dislike-animal must be a dog, and vice versa.
Now the zoo administrator is removing some animals, if one child’s like-animal is not removed and his/hers dislike-animal is removed, he/she will be happy. So the administrator wants to know which animals he should remove to make maximum number of happy children.
Input
The input file contains multiple test cases, for each case, the first line contains three integers N <= 100, M <= 100 and P <= 500.
Next P lines, each line contains a child’s like-animal and dislike-animal, C for cat and D for dog. (See sample for details)
Output
For each case, output a single integer: the maximum number of happy children.
Sample Input
1 1 2
C1 D1
D1 C1
1 2 4
C1 D1
C1 D1
C1 D2
D2 C1
Sample Output
1
3
Hint
Case 2: Remove D1 and D2, that makes child 1, 2, 3 happy.
题意:有p个孩子参观动物园,动物园里面有n只猫和m只狗,每个孩子喜欢猫讨厌狗,或者喜欢狗讨厌猫。当把一个孩子不喜欢的动物移走,喜欢的动物留下,这个孩子才会高兴。 问最多能使多少个孩子高兴。
解题思路:题目有一个关键点,孩子喜欢猫,必然不喜欢狗,反之。 即猫和猫之间,狗和狗之间一定不存在矛盾关系,符合二分图的概念。
需要求满足条件的最大独立集,而最大独立集=节点总个数-最小覆盖集,最小覆盖集=最大匹配,所以最大独立集=节点总个数-最大匹配。问题转化为了求最大匹配。
建图:
以孩子作为节点,如果A小孩喜欢的动物与B小孩讨厌的动物一样,或者A小孩讨厌的动物与B小孩喜欢的动物一样,那AB之间就存在着排斥关系,则他们之间连接一条边。 然后求出最多有多少对孩子之间产生矛盾,用这个结果除以2就是最大匹配数。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int N =555;
vector<int> vec[N]; //代表不同的孩子
char like[N][11],dis[N][111];
int result[N],vis[N];
bool find(int a)
{
int i;
for(i=0;i<vec[a].size();i++)
{
int u=vec[a][i];
if(!vis[u])
{
vis[u]=1;
if(!result[u]||find(result[u])) //如果i未在前一个匹配中或者从其相邻的节点出发可以有增广路
{
{
result[u]=a;
return true;
}
}
}
return false;
}
int main()
{
int i,j,n,m,p;
while(scanf("%d%d%d",&n,&m,&p)!=EOF)
{
memset(vec,0,sizeof(vec));
memset(result,0,sizeof(result));
for(i=0;i<p;i++)
{
scanf("%s%s",like[i],dis[i]);
}
for(i=0;i<p;i++)
{
for(j=i+1;j<p;j++)
{
if(!strcmp(like[i],dis[j])||!strcmp(dis[i],like[j]))
{
vec[i].push_back(j); //i与j产生矛盾,则在i与j之间建立路径
vec[j].push_back(i);
}
}
}
int ans=0;
for(i=0;i<p;i++)
{
memset(vis,0,sizeof(vis));
if(find(i))
ans++;
}
printf("%d
",p-ans/2);
}
return 0;
}