zoukankan      html  css  js  c++  java
  • LCA算法

    LCA问题:如何求树(不限于二叉树)中两个节点(不限于叶子节点)的最近公共祖先节点。
    LCA算法分为在线算法离线算法
    在线算法:可以以序列化的方式一个个的处理输入,也就是说在开始时并不需要已经知道所有的输入。
    离线算法:在开始时就需要知道问题的所有输入数据,而且在解决一个问题后就要立即输出结果。
    在线算法与离线算法都基于DFS。在线算法与RMQ算法(区间最值查询)相关,离线算法与Tarjan算法相关。
    在线算法 LCA RMQ的相互转换
    各自意义:
    LCA:基于有根树最近公共祖先问题。 LCA(T, u, v):在有根树T中,询问一个距离根最远的结点x,使得x同时为结点u、v的祖先。
    RMQ:区间最小值询问问题。 RMQ(A, i, j):对于线性序列A中,询问区间[i, j]上的最小(最大)值。
    RMQ对于LAC的转换:
    设一个长度为N的序列A,按照如下方法将其递归建立为一棵树:
    1)设序列中最小值为Ak,建立优先级为Ak的根节点Tk;
    2)将A(1…k-1)递归建树作为Tk的左子树;
    3)将A(k+1…N)递归建树作为Tk的右子树;
    如序列A=(7, 5, 8, 1, 10)建树的结果为:
    这里写图片描述
    对于RMQ(A, i, j):
    1)设序列中的最小值为Ak,若i<=k<=j,那么答案为k;
    2)若k>j,那么答案为RMQ(A1…k-1, i, j);
    3)若k< i,那么答案为RMQ(Ak+1…N, i, j);
    而RMQ问题可以采用ST算法解决,则将LCA转换为RMQ再根据ST算法解决,时间复杂度为O(nlogn)的预处理+O(1)的查询。

    LCA的离线Tarjan算法
    基于Tarjan算法与并查集。
    Tarjan算法
    算法用集合表示一类节点,这些节点跟集合外的点的LCA都一样,并把这个LCA设为这个集合的祖先。当搜索到节点x时,创建一个由x本身组成的集合,这个集合的祖先为x自己。然后递归搜索x的所有儿子节点。当一个子节点搜索完毕时,把子节点的集合与x节点的集合合并,并把合并后的集合的祖先设为x。因为这棵子树内的查询已经处理完,x的其他子树节点跟这棵子树节点的LCA都是一样的,都为当前根节点x。所有子树处理完毕之后,处理当前根节点x相关的查询。遍历x的所有查询,如果查询的另一个节点v已经访问过了,那么x和v的LCA即为v所在集合的祖先。
    对于每个节点u,关于它的询问(u,v)只有两种。
    1、v在u的子树内。
    此时LCA(u,v) = u.
    2、v不在u的子树内。
    ⑴假设v在u的父亲的另一棵子树内。
    此时LCA(u,v) = father[u].
    ⑵如果不满足条件⑴,则v可能在u的父亲的父亲的另一棵子树内。
    而此时LCA(u,v) = father[ father[u] ].
    ⑶……
    不论是哪种情况,LCA(u,v)都与u和father[ ]有某种关系。我们能不能抓住这种关系呢?
    我们继续观察,一直向上取father[ ],貌似和并查集的FIND操作很像呢。

    我们用并查集的角度依次考虑上面的情况试试看。
    1、v在u的子树内。
    此时dfs(u)还在栈中,没有执行完,此时没有向上取father[ ],说明此时u是根。
    2、v不在u的子树内。
    ⑴假设v在u的父亲的另一棵子树内。
    此时的dfs(u)已经执行完并出栈。此时向上取了一次father[ ],说明此时u的父亲是根。
    ⑵如果不满足条件⑴,则v可能在u的父亲的父亲的另一棵子树内。
    同理,此时dfs(u的父亲)也已经执行完并出栈。此时向上取了两次father[ ],说明此时u的父亲的父亲是根。
    ⑶……
    综上,我们只要保证当dfs(u)在栈中的时候,u是根;当dfs(u)不在栈中的时候,father[u]是根就行了。

  • 相关阅读:
    ckplayer不支持谷歌92版本,flashplayer不支持m3u8的方案
    git merge 失败
    在SuperSocket中使用Unity注入
    在WPF中集成SuperSocket 2.0
    在WPF中打印A4纸
    使用 HoloLens 仿真器
    C# 优化内存和运行效率
    Redis 高可用篇:你管这叫 Sentinel 哨兵集群原理
    Redis 核心篇:唯快不破的秘密
    Redis 日志篇:无畏宕机快速恢复的杀手锏
  • 原文地址:https://www.cnblogs.com/luckycode/p/5255645.html
Copyright © 2011-2022 走看看