zoukankan      html  css  js  c++  java
  • Triangle

    Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    For example, given the following triangle

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    用DP主要还是要找出递推关系,边界条件

    这里的递推关系miniPaht[i][j]表示第i层第j个点的最短路径

    miniPath[i][j] = min{miniPath[i - 1][j], miniPath[i - 1][j - 1]} + triangle.get(i).get(j)

    注意i和j等于0和等于 triangle.get(i).size - 1的边界条件问题

    求出最后一层所有点的最小值,在遍历最后一层找出最小值

    参考:http://blog.csdn.net/zhanghaodx082/article/details/24599479

     1 public class Solution {
     2     public int minimumTotal(List<List<Integer>> triangle) {
     3         if(null == triangle)
     4             return 0;
     5         if(1 == triangle.size())
     6             return triangle.get(0).get(0);
     7         int miniPath[][] = new int[triangle.size()][triangle.size()];
     8         for(int i = 0; i < triangle.size(); i++){
     9             for(int j = 0; j < triangle.get(i).size(); j++){
    10                 if(0 == i && 0 == j){
    11                     miniPath[i][j] = triangle.get(0).get(0);
    12                     continue;
    13                 }                    
    14                 if(j == 0)
    15                     miniPath[i][j] = miniPath[i - 1][j] + triangle.get(i).get(j);
    16                 else if(j == i)
    17                     miniPath[i][j] = miniPath[i - 1][j - 1] + triangle.get(i).get(j);
    18                 else
    19                     miniPath[i][j] = Math.min(miniPath[i - 1][j], miniPath[i - 1][j - 1]) + triangle.get(i).get(j);
    20             }
    21         }
    22         int ret = miniPath[triangle.size() - 1][0];
    23         //showMiniPath(miniPath);
    24         for(int i = 1; i < miniPath[0].length; i++){
    25             ret = Math.min(ret, miniPath[triangle.size() - 1][i]);
    26         }
    27         return ret;
    28     }
    29 }

    这里可以用原来的空间,使得空间复杂度为O(1)

    ps:我没有这么做

  • 相关阅读:
    PKUSC 2018 题解
    [bzoj 1758] 重建计划
    bzoj 5329 [SDOI2018] 战略游戏
    bzoj 5285 [HNOI2018] 寻宝游戏
    Django 之认证模块
    Django之form表单
    Django 之AJAX
    Django 之中间组件
    Django之 Cookie,Session
    Django之F和Q查询等其他查询
  • 原文地址:https://www.cnblogs.com/luckygxf/p/4109548.html
Copyright © 2011-2022 走看看