Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab"
,
Return 1
since the palindrome partitioning ["aa","b"]
could be produced using 1 cut.
思路
1.用回溯,递归回溯超时
2.dp
这里需要两个dp状态数组
isPalin[i][j] = true表示字符串str.sub(i, j)为回文
递推关系式isPalin[i][j] = (str.charAt(i) == str.charAt(j) && j -i < 2) || (str.charAt(i) == str.charAt(j) && isPalin[i + 1][j - 1])
cuts[i]表示从第str.charAt(i)到str.length()需要多少cut。默认为每个字符都切一刀,即cuts[i] = str.length - i。递推关系
if(isPalin[i][j])
cuts[i] = min{cuts[i], cuts[i + j] + 1}
参考:http://blog.csdn.net/ljphhj/article/details/22573983
1 public class Solution { 2 public int minCut(String s) { 3 int min = 0; 4 if(0 == s.length() || 1 == s.length()) 5 return min; 6 boolean isPalin[][] = new boolean[s.length()][s.length()]; 7 int cuts[] = new int[s.length() + 1]; 8 int length = s.length(); 9 10 //初始化cuts[]数组 11 for(int i = 0; i < length; i++) 12 cuts[i] = length - i; 13 //dp过程 14 for(int i = length - 1; i >= 0; i--){ 15 for(int j = i; j < length; j++){ 16 if((s.charAt(i) == s.charAt(j) && (j - i < 2)) 17 || (s.charAt(i) == s.charAt(j) && isPalin[i + 1][j - 1])){ 18 isPalin[i][j] = true; 19 cuts[i] = getMin(cuts[i], cuts[j + 1] + 1); 20 }//if 21 }//for 22 }//for 23 24 min = cuts[0]; 25 26 return min - 1; 27 }//minCut 28 29 public int getMin(int num1, int num2){ 30 return num1 < num2 ? num1 : num2; 31 } 32 }