zoukankan      html  css  js  c++  java
  • 机器学习笔记18-----贝叶斯网络实践

    1.朴素贝叶斯

    (1)主要内容

    (2)朴素贝叶斯的假设

    (3)朴素贝叶斯的推导

    (4)朴素贝叶斯的应用举例

    分析过程如下图所示:

    思考:

    2.代码示例

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    from sklearn.preprocessing import StandardScaler
    from sklearn.naive_bayes import GaussianNB, MultinomialNB
    from sklearn.pipeline import Pipeline
    from sklearn.neighbors import KNeighborsClassifier
    
    
    def iris_type(s):
        it = {b'Iris-setosa': 0, b'Iris-versicolor': 1, b'Iris-virginica': 2}
        return it[s]
    
    
    if __name__ == "__main__":
        data = np.loadtxt('8.iris.data', dtype=float, delimiter=',', converters={4: iris_type})
        print(data)
        x, y = np.split(data, (4,), axis=1)
        x = x[:, :2]
        print(x)
        print(y)
    
        gnb = Pipeline([
            ('sc', StandardScaler()),
            ('clf', GaussianNB())])
        gnb.fit(x, y.ravel())
        # gnb = MultinomialNB().fit(x, y.ravel())
        # gnb = KNeighborsClassifier(n_neighbors=5).fit(x, y.ravel())
    
        # 画图
        N, M = 500, 500     # 横纵各采样多少个值
        x1_min, x1_max = x[:, 0].min(), x[:, 0].max()   # 第0列的范围
        x2_min, x2_max = x[:, 1].min(), x[:, 1].max()   # 第1列的范围
        t1 = np.linspace(x1_min, x1_max, N)
        t2 = np.linspace(x2_min, x2_max, M)
        x1, x2 = np.meshgrid(t1, t2)                    # 生成网格采样点
        x_test = np.stack((x1.flat, x2.flat), axis=1)   # 测试点
    
        # 无意义,只是为了凑另外两个维度
        # x3 = np.ones(x1.size) * np.average(x[:, 2])
        # x4 = np.ones(x1.size) * np.average(x[:, 3])
        # x_test = np.stack((x1.flat, x2.flat, x3, x4), axis=1)  # 测试点
    
        mpl.rcParams['font.sans-serif'] = [u'simHei']
        mpl.rcParams['axes.unicode_minus'] = False
        cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FF8080', '#A0A0FF'])
        cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
        y_hat = gnb.predict(x_test)                  # 预测值
        y_hat = y_hat.reshape(x1.shape)                 # 使之与输入的形状相同
        plt.figure(facecolor='w')
        plt.pcolormesh(x1, x2, y_hat, cmap=cm_light)     # 预测值的显示
        plt.scatter(x[:, 0], x[:, 1], c=np.squeeze(y), edgecolors='k', s=50, cmap=cm_dark)    # 样本的显示
        plt.xlabel(u'花萼长度', fontsize=14)
        plt.ylabel(u'花萼宽度', fontsize=14)
        plt.xlim(x1_min, x1_max)
        plt.ylim(x2_min, x2_max)
        plt.title(u'GaussianNB对鸢尾花数据的分类结果', fontsize=18)
        plt.grid(True)
        plt.show()
    
        # 训练集上的预测结果
        y_hat = gnb.predict(x)
        y = y.reshape(-1)
        result = y_hat == y
        print(y_hat)
        print(result)
        acc = np.mean(result)
        print('准确度: %.2f%%' % (100 * acc))

    效果图:

  • 相关阅读:
    hadoop-1.2.1-1.x86_64.rpm、jdk-7u45-linux-x64.tar.gz安装(64位)
    如何卸载rpm包
    html+css基础知识总结
    css常用公共样式
    jquery时间控件datepicker
    jquery事件重复绑定的快速解决方法
    原生javascript里jsonp的实现原理
    Bootstrap分页插件--Bootstrap Paginator
    数据库基础知识(1)--数据库php连接
    jQuery radio取值,checkbox取值,select取值
  • 原文地址:https://www.cnblogs.com/luckyplj/p/12712312.html
Copyright © 2011-2022 走看看