zoukankan      html  css  js  c++  java
  • what is feeding and what is 读扩散 and 写扩散?

    what is feeding?

      通俗点说feed系统就是当你登陆进对应网站后:微信朋友圈的动态、人人网上看到的一件件新鲜事、新浪微博上推到你面前的一条条新围脖等等。系统中的每一条消息就是一个feed。feed的获取方式主要有两种:push(推)以及pull(拉)。也就是接下来所说的读扩散和写扩散。

      feed流业务最大的特点是“我们的主页由别人发布的feed组成”,获得朋友圈消息feed流集合,从技术上说,主要有“拉取”与“推送”两种方式。feed流的推与拉主要指的是这里。

    feed的特点

    • 有好友关系,例如关注,粉丝

    • 我们的主页由别人发布的feed组成

    feed的经典动作

    • 关注,取关

    • 发布feed

    • 拉取自己的主页feed流

    feed的核心元数据

    • 关系数据

    • feed数据

    feeding流之读扩散?

      例如:某feed系统里有ABCD四个用户,其中:

    • A关注了BC,D关注了B

      其关系存储又包含关注关系与粉丝关系,“A关注了BC,D关注了B”的潜台词是“B有两个粉丝AD,C有一个粉丝A”。

    • B发布过四条feed:msg1, msg3, msg5, msg10

    • C发布过两条feed:msg2, msg8

      每一个用户,都有一个feed队列,记录自己曾经发布的所有feed数据。

      在拉模式中,发布一条feed的流程非常简单,例如C新发布了一条msg12:

      此时只需往C的feed队列里加入一条feed即可。

      在拉模式中,取消关注的流程也非常简单,例如A取消关注C:

      此时只需要在A的关注列表里删除C,并在C的粉丝列表里删除A即可。

      在拉模式中,用户A获取“由别人发布的feed组成的主页”的过程比较复杂,此时需要:

      •   获取A的关注列表

      list<gz_uid> = select uid from GZ where uid=A

      •   获取所关注的用户发布的feed

      list<msg> = NULL;

      for(uid in list<gz_uid>){

               list<some_msg> = 

                  select * from F where uid=$uid offset | limit

               list<msg> += list<some_msg>;

      }

    • 对消息进行rank排序(假设按照发布时间排序),分页取出对应的一页feeds

      sort_msg_by_time(list<msg>);

      get_one_page(list<msg>, page_num);

      feed流的拉模式(“读扩散”)有什么优缺点?

      优点

      •   存储结构简单,数据存储量较小,关系数据与feed数据都只存一份

      •   取消关注,发布feed的业务流程非常简单

      •   存储结构,业务流程都比较容易理解,非常适合项目早期用户量、数据量、并发量不大时的快速实现

      缺点也显而易见:

      •   拉取朋友圈feed流列表的业务流程非常复杂

      •   有多次数据访问,并且要进行大量的内存计算,大量数据的网络传输,性能较低

       在拉模式中,系统的瓶颈容易出现在“用户所发布feed列表”的读取上,而每个用户发布feed的频率其实是很低的,此时,架构优化的核心是通过缓存降低数据存储磁盘IO。

      当用户量、数据量、并发量数据逐步增加之后,拉模式会慢慢扛不住了,需要升级优化,但对于“取消关注”与“发布feed”这两个写流程又会有冲击和影响。

    feeding流之写扩散?

      推模式(写扩散),关系数据的存储与拉模式(读扩散)完全一样。

      feed数据,每个用户也存储自己发布的feed

      如上图:

      •   B曾经发布过1,3,5,10

      •   C曾经发布过2,8

      画外音:不妨设,这里的msgid按照feed的发布时间偏序。 

      feed数据存储,与拉(读扩散)不同的是,每个用户还需要存储自己收到的feed流

      如上图:

      •   A关注了BC,所以A的接收队列是1,2,3,5,8,10

      •   D关注了B,所以D的接受队列是1,3,5,10

      在推模式(写扩散)中,获取“由别人发布的feed组成的主页”会变得异常简单,假设一页消息为3条feed,A如果要看自己朋友圈的第二页消息,直接返回1,2,3即可。

      画外音:第一页朋友圈是最新的消息,即5,8,10。

      在推模式(写扩散)中,发布一条feed的流程会更复杂一点。

      例如B新发布了一条msg12:

      •   在B的发布feed存储里加入消息12

      •   查询B全部粉丝AD

      •   在粉丝AD的接收feed存储里也加入消息12

      之所以该方案称为推模式(写扩散),就是因为,用户发布feed的时候:

      •   直接将feed推到了粉丝的接收列表里,故称为“推模式”

      •   不止写发布feed存储,而且要写多个粉丝的接收feed存储,故称为“写扩散”

      在推模式(写扩散)中,添加关注的流程也会变得复杂。

      例如D新增关注C:

      •   在D的关注存储里添加C

      •   在C的粉丝存储里添加D

      •   在D的接收feed存储里加入C发布的feed

      画外音:有些产品有这样的逻辑,“关注之后才能看到feed”,这样的话就不需要第三步,旧feed无需插入。

      在推模式(写扩散)中,取消关注的流程也会变得复杂。

      例如A取消关注C:

      •   在A的关注存储里删除C

      •   在C的粉丝存储里删除A

      •   在A的接收feed存储里删除C发布的feed 

      feed流的推模式(写扩散)的优点是:

      •   消除了拉模式(读扩散)的IO集中点,每个用户都读自己的数据,高并发下锁竞争少

      画外音:拉模式(读扩散)中,用户发布feed存储容易称为IO瓶颈。

      •   拉取朋友圈feed流列表的业务流程异常简单,速度很快

      •   拉取朋友圈feed流列表,不需要进行大量的内存计算,网络传输,性能很高

      画外音:feed业务是典型的读多写少业务场景,读写比甚至高于100:1,即平均发布1条消息,有至少100次阅读。

      其缺点是:

      •   极大极大消耗存储资源,feed数据会存储很多份,例如杨幂5KW粉丝,她每次一发博文,消息会冗余5KW份

      画外音:有朋友提出,可以存储一份消息实体,只冗余msgid,这样的话,拉取feed流列表时,还要再次拉取实体,网络时延会更长,所以很多公司选择直接冗余消息实体,当然,这是一个用户体验与存储量的折衷设计。

      •   新增关注,取消关注,发布feed的业务流会更复杂

    小结

      feed流业务的推拉模式小结:

      •   拉模式,读扩散,feed存一份,存储小,用户集中访问数据,性能差

      •   推模式,写扩散,feed存多份,用冗余存储换锁冲突,性能高

  • 相关阅读:
    Delphi中动态创建的Panel无法改变颜色的解决办法(要把Panel的ParentBackground设为False)
    判断当前进程是否以管理员权限启动的
    在一个exe文件中查找指定内容,找到则返回起始位置, 否则返回0
    [置顶] 使用严苛模式打破Android4.0以上平台应用中UI主线程的“独断专行”
    删除IE缓存中指定的文件
    将窗体显示在 PageControl 上
    判断操作系统多久没有任何操作
    UrlDownloadFile, 线程下载文件, 带进度条
    用JSON 和 Google 实现全文翻译
    成为高效程序员的7个重要习惯
  • 原文地址:https://www.cnblogs.com/lufeiludaima/p/pz20190207.html
Copyright © 2011-2022 走看看