zoukankan      html  css  js  c++  java
  • storm原理介绍

    storm原理介绍

    @(博客文章)[storm|大数据]

    一、原理介绍

    待补充

    二、配置

    完整的默认配置文件见下面defaluts.yaml,若需要修改,则在storm.yaml中修改。重要参数如下:
    1、storm.zookeeper.servers:指定使用哪个zookeeper集群

    storm.zookeeper.servers:
         - "gdc-nn01-test"
         - "gdc-dn01-test"
         - "gdc-dn02-test”
    

    2、nimbus.host:指定nimbus是哪台机器

    nimbus.host: "gdc-nn01-test”
    

    3、指定supervisor在哪个端口上运行worker,每个端口可运行一个worker,因此有多少个配置端口,则每个supervisor有多少个slot(即可运行多少个worker)

    supervisor.slots.ports:
        - 6700
        - 6701
        - 6702
        - 6703
    storm.local.dir: "/home/hadoop/storm/data"
    

    4、jvm设置

    #jvm setting
    nimbus.childopts:"-4096m”
    supervisor.childopts:"-Xmx4096m"
    nimubs.childopts:"-Xmx3072m”
    

    除此外,还有ui.childopts,logviewer.childopts

    附完整配置文件:defaults.yaml

    ########### These all have default values as shown
    ########### Additional configuration goes into storm.yaml
    java.library.path: "/usr/local/lib:/opt/local/lib:/usr/lib"
    
    ### storm.* configs are general configurations
    # the local dir is where jars are kept
    storm.local.dir: "storm-local"
    storm.zookeeper.servers:
        - "localhost"
    storm.zookeeper.port: 2181
    storm.zookeeper.root: "/storm"
    storm.zookeeper.session.timeout: 20000
    storm.zookeeper.connection.timeout: 15000
    storm.zookeeper.retry.times: 5
    storm.zookeeper.retry.interval: 1000
    storm.zookeeper.retry.intervalceiling.millis: 30000
    storm.cluster.mode: "distributed" # can be distributed or local
    storm.local.mode.zmq: false
    storm.thrift.transport: "backtype.storm.security.auth.SimpleTransportPlugin"
    storm.messaging.transport: "backtype.storm.messaging.netty.Context"
    storm.meta.serialization.delegate: "backtype.storm.serialization.DefaultSerializationDelegate"
    
    ### nimbus.* configs are for the master
    nimbus.host: "localhost"
    nimbus.thrift.port: 6627
    nimbus.thrift.max_buffer_size: 1048576
    nimbus.childopts: "-Xmx1024m"
    nimbus.task.timeout.secs: 30
    nimbus.supervisor.timeout.secs: 60
    nimbus.monitor.freq.secs: 10
    nimbus.cleanup.inbox.freq.secs: 600
    nimbus.inbox.jar.expiration.secs: 3600
    nimbus.task.launch.secs: 120
    nimbus.reassign: true
    nimbus.file.copy.expiration.secs: 600
    nimbus.topology.validator: "backtype.storm.nimbus.DefaultTopologyValidator"
    
    ### ui.* configs are for the master
    ui.port: 8080
    ui.childopts: "-Xmx768m"
    logviewer.port: 8000
    logviewer.childopts: "-Xmx128m"
    logviewer.appender.name: "A1"
    
    drpc.port: 3772
    drpc.worker.threads: 64
    drpc.queue.size: 128
    drpc.invocations.port: 3773
    drpc.request.timeout.secs: 600
    drpc.childopts: "-Xmx768m"
    transactional.zookeeper.root: "/transactional"
    transactional.zookeeper.servers: null
    transactional.zookeeper.port: null
    
    ### supervisor.* configs are for node supervisors
    # Define the amount of workers that can be run on this machine. Each worker is assigned a port to use for communication
    supervisor.slots.ports:
        - 6700
        - 6701
        - 6702
        - 6703
    supervisor.childopts: "-Xmx256m"
    #how long supervisor will wait to ensure that a worker process is started
    supervisor.worker.start.timeout.secs: 120
    #how long between heartbeats until supervisor considers that worker dead and tries to restart it
    supervisor.worker.timeout.secs: 30
    #how frequently the supervisor checks on the status of the processes it's monitoring and restarts if necessary
    supervisor.monitor.frequency.secs: 3
    #how frequently the supervisor heartbeats to the cluster state (for nimbus)
    supervisor.heartbeat.frequency.secs: 5
    supervisor.enable: true
    ### worker.* configs are for task workers
    worker.childopts: "-Xmx768m"
    worker.heartbeat.frequency.secs: 1
    
    # control how many worker receiver threads we need per worker
    topology.worker.receiver.thread.count: 1
    task.heartbeat.frequency.secs: 3
    task.refresh.poll.secs: 10
    zmq.threads: 1
    zmq.linger.millis: 5000
    zmq.hwm: 0
    storm.messaging.netty.server_worker_threads: 1
    storm.messaging.netty.client_worker_threads: 1
    storm.messaging.netty.buffer_size: 5242880 #5MB buffer
    # Since nimbus.task.launch.secs and supervisor.worker.start.timeout.secs are 120, other workers should also wait at least that long before giving up on connecting to the other worker. The reconnection period need also be bigger than storm.zookeeper.session.timeout(default is 20s), so that we can abort the reconnection when the target worker is dead.
    storm.messaging.netty.max_retries: 30
    storm.messaging.netty.max_wait_ms: 1000
    storm.messaging.netty.min_wait_ms: 100
    
    # If the Netty messaging layer is busy(netty internal buffer not writable), the Netty client will try to batch message as more as possible up to the size of storm.messaging.netty.transfer.batch.size bytes, otherwise it will try to flush message as soon as possible to reduce latency.
    storm.messaging.netty.transfer.batch.size: 262144
    
    # We check with this interval that whether the Netty channel is writable and try to write pending messages if it is.
    storm.messaging.netty.flush.check.interval.ms: 10
    ### topology.* configs are for specific executing storms
    topology.enable.message.timeouts: true
    topology.debug: false
    topology.workers: 1
    topology.acker.executors: null
    topology.tasks: null
    # maximum amount of time a message has to complete before it's considered failed
    topology.message.timeout.secs: 30
    topology.multilang.serializer: "backtype.storm.multilang.JsonSerializer"
    topology.skip.missing.kryo.registrations: false
    topology.max.task.parallelism: null
    topology.max.spout.pending: null
    topology.state.synchronization.timeout.secs: 60
    topology.stats.sample.rate: 0.05
    topology.builtin.metrics.bucket.size.secs: 60
    topology.fall.back.on.java.serialization: true
    topology.worker.childopts: null
    topology.executor.receive.buffer.size: 1024 #batched
    topology.executor.send.buffer.size: 1024 #individual messages
    topology.receiver.buffer.size: 8 # setting it too high causes a lot of problems (heartbeat thread gets starved, throughput plummets)
    topology.transfer.buffer.size: 1024 # batched
    topology.tick.tuple.freq.secs: null
    topology.worker.shared.thread.pool.size: 4
    topology.disruptor.wait.strategy: "com.lmax.disruptor.BlockingWaitStrategy"
    topology.spout.wait.strategy: "backtype.storm.spout.SleepSpoutWaitStrategy"
    topology.sleep.spout.wait.strategy.time.ms: 1
    topology.error.throttle.interval.secs: 10
    topology.max.error.report.per.interval: 5
    topology.kryo.factory: "backtype.storm.serialization.DefaultKryoFactory"
    topology.tuple.serializer: "backtype.storm.serialization.types.ListDelegateSerializer"
    topology.trident.batch.emit.interval.millis: 500
    topology.classpath: null
    topology.environment: null
    dev.zookeeper.path: "/tmp/dev-storm-zookeeper"</span>
    

    三、并行度

    (一)storm拓扑的并行度可以从以下4个维度进行设置:

    1、node(服务器):指一个storm集群中的supervisor服务器数量。
    2、worker(jvm进程):指整个拓扑中worker进程的总数量,这些数量会随机的平均分配到各个node。
    3、executor(线程):指某个spout或者bolt的总线程数量,这些线程会被随机平均的分配到各个worker。
    4、task(spout/bolt实例):task是spout和bolt的实例,它们的nextTuple()和execute()方法会被executors线程调用。除非明确指定,storm会给每个executor分配一个task。如果设置了多个task,即一个线程持有了多个spout/bolt实例.
    注意:以上设置的都是总数量,这些数量会被平均分配到各自的宿主上,而不是设置每个宿主进行多少个进程/线程。详见下面的例子。

    (二)并行度的设置方法

    1、node:买机器吧,然后加入集群中……
    2、worker:Config#setNumWorkers() 或者配置项 TOPOLOGY_WORKERS
    3、executor:Topology.setSpout()/.setBolt()
    4、task:ComponentConfigurationDeclarer#setNumWorker()

    (三)示例

    // 创建topology  
    TopologyBuilder builder = new TopologyBuilder();  
    builder.setSpout("kafka-reader", new KafkaSpout(spoutConf), 5);//设置executor数量为5  
    builder.setBolt("filter-bolt", new FilterBolt(), 3).shuffleGrouping(  
            "kafka-reader");//设置executor数量为3  
    builder.setBolt("log-splitter", new LogSplitterBolt(), 3)  
            .shuffleGrouping("filter-bolt");//设置executor数量为5  
    builder.setBolt("hdfs-bolt", hdfsBolt, 2).shuffleGrouping(  
            "log-splitter");//设置executor数量为2  
      
    // 启动topology  
    Config conf = new Config();  
    conf.put(Config.NIMBUS_HOST, nimbusHost);  
    conf.setNumWorkers(3);      //设置worker数量  
    StormSubmitter.submitTopologyWithProgressBar(topologyName, conf,  
            builder.createTopology());  
    

    1、通过config.setNumWorkers(3)将worker进程数量设置为3,假设集群中有3个node,则每个node会运行一个worker。
    2、executor的数量分别为:
    spout:5
    filter-bolt:3
    log-splitter:3
    hdfs-bolt:2
    总共为13个executor,这13个executor会被随机分配到各个worker中去。
    注:这段代码是从kafka中读取消息源的,而这个topic在kafka中的分区数量设置为5,因此这里spout的线程ovtn为5.
    3、这个示例都没有单独设置task的数量,即使用每个executor一个task的默认配置。若需要设置,可以:

            builder.setBolt("log-splitter", new LogSplitterBolt(), 3)
                    .shuffleGrouping("filter-bolt").setNumTasks(5);
    

    来进行设置,这5个task会被分配到3个executor中。

    (四)并行度的动态调整
    对storm拓扑的并行度进行调整有2种方法:
    1、kill topo—>修改代码—>编译—>提交拓扑
    2、动态调整
    第1种方法太不方便了,有时候topo不能说kill就kill,另外,如果加几台机器,难道要把所有topo kill掉还要修改代码?
    因此storm提供了动态调整的方法,动态调整有2种方法:
    1、ui方式:进入某个topo的页面,点击rebalance即可,此时可以看到topo的状态是rebalancing。但此方法只是把进程、线程在各个机器上重新分配,即适用于增加机器,或者减少机器的情形,不能调整worker数量、executor数量等
    2、cli方式:storm rebalance
    举个例子

    storm rebalance toponame -n 7 -e filter-bolt=6 -e hdfs-bolt=8
    

    将topo的worker数量设置为7,并将filter-bolt与hdfs-bolt的executor数量分别设置为6、8.
    此时,查看topo的状态是rebalancing,调整完成后,可以看到3台机器中的worker数量分别为3、2、2

    四、分组

    Storm通过分组来指定数据的流向,主要指定了每个bolt消费哪个流,以及如何消费。
    storm内置了7个分组方式,并提供了CustomStreamGrouping来创建自定义的分组方式。
    1、随机分组 shuffleGrouping
    这种方式会随机分发tuple给bolt的各个task,每个task接到到相同数量的tuple。

    2、字段分组 fieldGrouping
    按照指定字段进行分组,该字段具有相同组的会被发送到同一个task,具体不同值的可能会被发送到不同的task。

    3、全复制分组 allGrouping(或者叫广播分组)
    每一个tuple都会发送给所有的task,必须小心使用。

    4、全局分组 globlaGrouping
    将所有tuple均发送到唯一的task,会选取task ID最小的task。这种分组下,设置task的并行度是没有意义的。另外,这种方式很有可能引起瓶颈。

    5、不分组 noneGrouping
    留作以后使用,目前也随机分组相同。

    6、指向型分组 directGrouping(或者叫直接分组)
    数据源会调用emitDirect()方法来判断一个tuple应该由哪个storm组件来接收,只能在声明了是指向型的数据流上使用。

    7、本地或随机分组 localOrShuffleGrouping
    如果接收bolt在同一个进程中存在一个或者多个task,tuple会优先发送给这个task。否则和随机分组一样。相对于随机分组,此方式可以减少网络传输,从而提高性能。

    五、可靠性

    可靠性:spout发送的消息会被拓扑树上的所有节点ack,否则会一直重发。
    导致重发的原因有2个:
    (1)fail()被调用
    (2)超时无响应。
    完整的可靠性示例请参考storm blueprint的chapter1 v4代码,或者P22,或者参考从零开始学storm P102页的例子。
    关键步骤如下:

    (一)spout

    1、创建一个map,用于记录已经发送的tuple的id与内容,此为待确认的tuple列表。
    private ConcurrentHashMap<UUID,Values> pending;
    2、发送tuple时,加上一个参数用于指明该tuple的id。同时,将此tuple加入map中,等待确认。
    UUID msgId = UUID.randomUUID();
    this.pending.put(msgId,values);
    this.collector.emit(values,msgId);
    3、定义ack方法与fail方法。
    ack方法将tuple从map中取出
    this.pending.remove(msgId);
    fail方法将tuple重新发送
    this.collector.emit(this.pending.get(msgId),msgId);

    对于没回复的tuple,会定时重新发送。

    (二)bolt

    处理该tuple的每个bolt均需要增加以下内容:
    1、emit时,增加一个参数anchor,指定响应的tuple
    collector.emit(tuple,new Values(word));
    2、确认接收到的tuple已经处理
    this.collector.ack(tuple);

  • 相关阅读:
    定时器
    表单事件
    闭包,string类,Array类
    构造函数,原型链补充
    Elasticsearch安装(6.4.3版)
    快速配置ssh免密登录
    idea远程debug SpringBoot项目
    java获取一个对象的内存大小
    nginx代理其他网站
    外呼系统实现平均分配策略的实现方式之一
  • 原文地址:https://www.cnblogs.com/lujinhong2/p/4686512.html
Copyright © 2011-2022 走看看