cpu: tk55
ram: 2g
hd:120g
os:vista+sp1
sql:sql2005开发版
以下测试只跑一两次,取最后一次(一般第一次会很慢)。
1.禁用ObjectTrackingEnabled
当只是查询数据而不跟踪对象状态时禁用,将极大的提供查询性能。性能差异在36倍左右。测试代码:
DateTime d1 = DateTime.Now;
adventureWorks1.ObjectTrackingEnabled = true;
var q1 = (from p in adventureWorks1.Products select p).ToList();
DateTime d2 = DateTime.Now;
Console.WriteLine(d2.Ticks - d1.Ticks);
AdventureWorksDataContext adventureWorks2 = new AdventureWorksDataContext();
DateTime d3 = DateTime.Now;
adventureWorks2.ObjectTrackingEnabled = false;
var q2 = (from p in adventureWorks2.Products select p).ToList();
DateTime d4 = DateTime.Now;
Console.WriteLine(d4.Ticks - d3.Ticks);
11232000
312000
2.不记录输出
输入记录一般只用在开发阶段,在部署环境中一般不使用。性能差异在17-18倍左右。测试代码:
DateTime d1 = DateTime.Now;
adventureWorks1.Log = Console.Out;
var q1 = (from p in adventureWorks1.Products select p).ToList();
DateTime d2 = DateTime.Now;
Console.WriteLine(d2.Ticks - d1.Ticks);
AdventureWorksDataContext adventureWorks2 = new AdventureWorksDataContext();
DateTime d3 = DateTime.Now;
var q2 = (from p in adventureWorks2.Products select p).ToList();
DateTime d4 = DateTime.Now;
Console.WriteLine(d4.Ticks - d3.Ticks);
输出
SELECT [t0].[ProductID], [t0].[Name], [t0].[ProductNumber], [t0].[MakeFlag], [t0
].[FinishedGoodsFlag], [t0].[Color], [t0].[SafetyStockLevel], [t0].[ReorderPoint
], [t0].[StandardCost], [t0].[ListPrice], [t0].[Size], [t0].[SizeUnitMeasureCode
], [t0].[WeightUnitMeasureCode], [t0].[Weight], [t0].[DaysToManufacture], [t0].[
ProductLine], [t0].[Class], [t0].[Style], [t0].[ProductSubcategoryID], [t0].[Pro
ductModelID], [t0].[SellStartDate], [t0].[SellEndDate], [t0].[DiscontinuedDate],
[t0].[rowguid], [t0].[ModifiedDate]
FROM [Production].[Product] AS [t0]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.21022.8
11076000
624000
3.编译lambda表达式
性能差异14-15倍。测试代码:
DateTime d1 = DateTime.Now;
var q1 = (from p in adventureWorks1.Products select p).ToList();
DateTime d2 = DateTime.Now;
Console.WriteLine(d2.Ticks - d1.Ticks);
AdventureWorksDataContext adventureWorks2 = new AdventureWorksDataContext();
DateTime d3 = DateTime.Now;
var compiledQuery = CompiledQuery.Compile((AdventureWorksDataContext ctx) => from p in ctx.Products select p);
var q2 = compiledQuery(adventureWorks2).ToList();
DateTime d4 = DateTime.Now;
Console.WriteLine(d4.Ticks - d3.Ticks);
11076000
780000
4.使用DataLoadOptions.LoadWith
性能差异5-6倍左右。测试代码:
DateTime d1 = DateTime.Now;
var q1 = (from o in adventureWorks1.WorkOrders where o.ProductID == 3 select o).ToList();
DateTime d2 = DateTime.Now;
Console.WriteLine(d2.Ticks - d1.Ticks);
AdventureWorksDataContext adventureWorks2 = new AdventureWorksDataContext();
DateTime d3 = DateTime.Now;
DataLoadOptions options = new DataLoadOptions();
options.LoadWith<WorkOrder>(o => o.Product);
adventureWorks2.LoadOptions = options;
var q2 = (from o in adventureWorks2.WorkOrders where o.ProductID == 3 select o).ToList();
DateTime d4 = DateTime.Now;
Console.WriteLine(d4.Ticks - d3.Ticks);
11700000
2184000
5.使用延迟加载(系统默认)
性能差异42-43倍左右。测试代码
DateTime d1 = DateTime.Now;
adventureWorks1.DeferredLoadingEnabled = true;
var q1 = (from o in adventureWorks1.WorkOrders where o.ProductID == 3 select o).ToList();
DateTime d2 = DateTime.Now;
Console.WriteLine(d2.Ticks - d1.Ticks);
AdventureWorksDataContext adventureWorks2 = new AdventureWorksDataContext();
DateTime d3 = DateTime.Now;
adventureWorks2.DeferredLoadingEnabled = false;
var q2 = (from o in adventureWorks1.WorkOrders where o.ProductID == 3 select o).ToList();
DateTime d4 = DateTime.Now;
Console.WriteLine(d4.Ticks - d3.Ticks);
26676000
624000
6.使用sql语句
性能差异 7倍左右













11856000
1716000
7.使用储存过程
性能差异20倍左右。测试代码:
DateTime d1 = DateTime.Now;
var q1 = (from o in adventureWorks1.WorkOrders where o.ProductID == 3 select o).ToList();
DateTime d2 = DateTime.Now;
Console.WriteLine(d2.Ticks - d1.Ticks);
AdventureWorksDataContext adventureWorks2 = new AdventureWorksDataContext();
DateTime d3 = DateTime.Now;
var q2 = adventureWorks2.GetWorkOrderByProductID(3).ToList();
DateTime d4 = DateTime.Now;
Console.WriteLine(d4.Ticks - d3.Ticks);



































12168000
624000
8、获取数据以用于数据绑定
性能差异1.5倍左右。测试代码:
DateTime d1 = DateTime.Now;
var q1 = adventureWorks1.Products.ToList();
DateTime d2 = DateTime.Now;
Console.WriteLine(d2.Ticks - d1.Ticks);
AdventureWorksDataContext adventureWorks2 = new AdventureWorksDataContext();
DateTime d3 = DateTime.Now;
var q2 = adventureWorks2.WorkOrders.GetNewBindingList();
DateTime d4 = DateTime.Now;
Console.WriteLine(d4.Ticks - d3.Ticks);
10140000
6708000