zoukankan      html  css  js  c++  java
  • Codeforce-Ozon Tech Challenge 2020-C. Kuroni and Impossible Calculation(鸽笼原理)

    To become the king of Codeforces, Kuroni has to solve the following problem.

    He is given n numbers a1,a2,…,an. Help Kuroni to calculate ∏1≤i<j≤n|ai−aj|. As result can be very big, output it modulo m.

    If you are not familiar with short notation, ∏1≤i<j≤n|ai−aj| is equal to |a1−a2|⋅|a1−a3|⋅ … ⋅|a1−an|⋅|a2−a3|⋅|a2−a4|⋅ … ⋅|a2−an|⋅ … ⋅|an−1−an|. In other words, this is the product of |ai−aj| for all 1≤i<j≤n.

    Input
    The first line contains two integers n, m (2≤n≤2⋅105, 1≤m≤1000) — number of numbers and modulo.

    The second line contains n integers a1,a2,…,an (0≤ai≤109).

    Output
    Output the single number — ∏1≤i<j≤n|ai−aj|modm.

    Examples
    inputCopy
    2 10
    8 5
    outputCopy
    3
    inputCopy
    3 12
    1 4 5
    outputCopy
    0
    inputCopy
    3 7
    1 4 9
    outputCopy
    1
    Note
    In the first sample, |8−5|=3≡3mod10.

    In the second sample, |1−4|⋅|1−5|⋅|4−5|=3⋅4⋅1=12≡0mod12.

    In the third sample, |1−4|⋅|1−9|⋅|4−9|=3⋅8⋅5=120≡1mod7.

    这就是个鸽笼原理,m<=1000

    #include <bits/stdc++.h>
    using namespace std;
    template <typename t>
    void read(t &x)
    {
        char ch = getchar();
        x = 0;
        t f = 1;
        while (ch < '0' || ch > '9')
            f = (ch == '-' ? -1 : f), ch = getchar();
        while (ch >= '0' && ch <= '9')
            x = x * 10 + ch - '0', ch = getchar();
        x *= f;
    }
     
    #define wi(n) printf("%d ", n)
    #define wl(n) printf("%lld ", n)
    #define rep(m, n, i) for (int i = m; i < n; ++i)
    #define rrep(m, n, i) for (int i = m; i > n; --i)
    #define P puts(" ")
    typedef long long ll;
    #define MOD 1000000007
    #define mp(a, b) make_pair(a, b)
    #define N 200005
    #define fil(a, n) rep(0, n, i) read(a[i])
    //---------------https://lunatic.blog.csdn.net/-------------------//
    int a;
    int b[1005], flag;
    vector<pair<int, int>> c;
    int main()
    {
        int n, m;
        read(n), read(m);
        for (int i = 0; i < n; i++)
        {
            read(a);
            int mo = a % m;
            b[mo]++;
            c.push_back(make_pair(mo, a));
            if (b[mo] >= 2)
                flag = 1;
           // cout << mo << endl;
        }
        if (flag)
        {
            puts("0");
            return 0;
        }
        int ans = 1;
        for (int i = 0; i < c.size(); i++)
        {
            for (int j = i + 1; j < c.size(); j++)
            {
                if (c[i].second > c[j].second)
                {
                    ans *= (c[i].first - c[j].first + m);
                }
                else
                {
                    ans *= (-c[i].first + c[j].first + m);
                }
                ans %= m;
            }
        }
        cout << ans << endl;
    }
    
  • 相关阅读:
    BNU校赛
    Latest Common Ancestor
    Codeforces Round #482 (Div. 2)
    Persistent Line Segment Tree
    2018HNCCPC(Onsite)
    2018HNCCPC
    2017 ACM Jordanian Collegiate Programming Contest
    Codeforces Round #480 (Div. 2)
    负载均衡SLB
    windows下的端口监听、程序端口查找命令
  • 原文地址:https://www.cnblogs.com/lunatic-talent/p/12798378.html
Copyright © 2011-2022 走看看