zoukankan      html  css  js  c++  java
  • CF思维联系–CodeForces

    ACM思维题训练集合
    To confuse the opponents, the Galactic Empire represents fractions in an unusual format. The fractions are represented as two sets of integers. The product of numbers from the first set gives the fraction numerator, the product of numbers from the second set gives the fraction denominator. However, it turned out that the programs that work with fractions in this representations aren’t complete, they lack supporting the operation of reducing fractions. Implement this operation and the Empire won’t forget you.

    Input
    The first input line contains two space-separated integers n, m (1 ≤ n, m ≤ 105) that show how many numbers the first set (the numerator) and the second set (the denominator) contain, correspondingly.

    The second line contains n space-separated integers: a1, a2, …, an (1 ≤ ai ≤ 107) — the numbers that are multiplied to produce the numerator.

    The third line contains m space-separated integers: b1, b2, …, bm (1 ≤ bi ≤ 107) — the numbers that are multiplied to produce the denominator.

    Output
    Print the answer to the problem in the form, similar to the form of the input data. The number of values in the sets you print nout, mout must satisfy the inequality 1 ≤ nout, mout ≤ 105, and the actual values in the sets aout, i and bout, i must satisfy the inequality 1 ≤ aout, i, bout, i ≤ 107.

    Separate the values in the lines by spaces. The printed fraction must be reduced, that is, there mustn’t be such integer x (x > 1), that the numerator and the denominator of the printed fraction are divisible by x. If there are several matching answers, print any of them.

    Examples
    Input
    3 2
    100 5 2
    50 10
    Output
    2 3
    2 1
    1 1 1
    Input
    4 3
    2 5 10 20
    100 1 3
    Output
    1 1
    20
    3
    Note
    In the first test sample the numerator equals 1000, the denominator equals 500. If we reduce fraction 1000/500 by the greatest common divisor of the numerator and the denominator (by 500), we obtain fraction 2/1.

    In the second test sample the numerator equals 2000, the denominator equals 300. If we reduce fraction 2000/300 by the greatest common divisor of the numerator and the denominator (by 100), we obtain fraction 20/3.

    在这里插入图片描述
    日常WA一天
    不看跑的数据,我都不知道自己怎么错的,老天爷。我的输出超出了限制100001不能超过100000,我觉得那时候,那些没有过的,一定是这个原因,出题人真是丧心病狂。
    第一个代码是错的,第二个是修改了的,换了方式。

    #include <bits/stdc++.h>
    using namespace std;
    template <typename t>
    void read(t &x)
    {
        char ch = getchar();
        x = 0;
        int f = 1;
        while (ch < '0' || ch > '9')
            f = (ch == '-' ? -1 : f), ch = getchar();
        while (ch >= '0' && ch <= '9')
            x = x * 10 + ch - '0', ch = getchar();
        x *f;
    }
    bitset<100000010> v;
    int prime[6000001];
    int m = 0;
    void primes(int n)
    {
        for (int i = 2; i * i <= n; i++)
        {
            if (!v[i])
            {
                for (int j = i * i; j <= n; j += i)
                    v[j] = 1;
            }
        }
        for (int i = 2; i <= n; i++)
            if (!v[i])
                prime[m++] = i;
    }
    vector<int> a[4];
    unordered_map<int, int> c, d;
    int main()
    {
        int n, m, maxi = 0;
        read(n), read(m);
        primes(10000005);
        for (int i = 0; i < n; i++)
        {
            int tem;
            read(tem);
            maxi = max(maxi, tem);
            c[tem]++;
        }
    
        for (int i = 0; i < m; i++)
        {
            int tem;
            read(tem);
            maxi = max(maxi, tem);
            d[tem]++;
        }
        //cout << 1 << endl;
        for (int i = 0; prime[i] <= maxi; i++)
        {
            // cout<<i<<endl;
            int cnt = 0, ans = 0, cnt2 = 0;
            int flag = 1;
            for (auto po = c.begin(); po != c.end();)
            {
                // cout<<1<<endl;
                pair<int, int> tem = *po;
                cnt = 0;
                if (tem.first < prime[i])
                {
                    po++;
                    continue;
                }
                else
                {
                    flag = 0;
                    while (tem.first % prime[i] == 0)
                    {
                        tem.first /= prime[i];
                        cnt++;
                        //cout<<i<<endl;
                    }
                    cnt *= tem.second;
                    auto pi = po;
                    po++;
                    c.erase(pi);
                    if (tem.first != 1)
                        c[tem.first] += tem.second;
                }
                ans += cnt;
            }
            cnt2 = ans;
            ans = 0;
            for (auto po = d.begin(); po != d.end();)
            {
                pair<int, int> tem = *po;
                cnt = 0;
                if (tem.first < prime[i])
                {
                    po++;
                    continue;
                }
                else
                {
                    flag = 0;
                    while (tem.first % prime[i] == 0)
                    {
                        tem.first /= prime[i];
                        cnt++;
                        //cout<<i<<endl;
                    }
                    cnt *= tem.second;
                    auto pi = po;
                    po++;
                    d.erase(pi);
                    if (tem.first != 1)
                        d[tem.first] += tem.second;
                }
                ans += cnt;
            }
            cnt = cnt2 - ans;
    
            if (cnt == 0)
                continue;
            else if (cnt < 0)
            {
                cnt = -cnt;
                int temp = 1;
                int j = 0;
                for (; j < cnt; j++)
                {
                    temp *= prime[i];
                    if (temp * prime[i] > 10000000)
                    {
                        a[3].push_back(temp);
                        // cout << 1 << endl;
                        temp = 1;
                    }
                }
                a[3].push_back(temp);
            }
            else
            {
                int temp = 1;
                int j = 0;
                for (; j < cnt; j++)
                {
                    temp *= prime[i];
                    if (temp * prime[i] > 10000000)
                    {
                        a[2].push_back(temp);
                        // cout << 1 << endl;
                        temp = 1;
                    }
                }
                a[2].push_back(temp);
            }
            if (flag)
                break;
        }
        if (a[2].size() == 0)
            a[2].push_back(1);
        if (a[3].size() == 0)
            a[3].push_back(1);
        cout << a[2].size() << " " << a[3].size() << endl;
        for (int i = 0; i < a[2].size(); ++i)
            printf("%d ", a[2][i]);
        puts("");
        for (int i = 0; i < a[3].size(); ++i)
            printf("%d ", a[3][i]);
        puts("");
    }
    
    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    
    int n, m, tot, a[100005], b[100005], z[10000005], pos[10000005], q[1000005], t1[1000005], t2[1000005];
    
    int main()
    {
    
        scanf("%d%d", &n, &m);
        for (int i = 1; i <= n; ++i)
            scanf("%d", &a[i]);
        for (int i = 1; i <= m; ++i)
            scanf("%d", &b[i]);
        for (int i = 2; i <= 10000000; ++i)
            if (!z[i])
            {
                for (int j = i; j <= 10000000; j += i)
                    z[j] = i;
                q[++tot] = i;
                pos[i] = tot;
            }
        for (int i = 1; i <= n; ++i)
        {
            int k = a[i];
            while (k != 1)
            {
                t1[pos[z[k]]]++;
                k /= z[k];
            }
        }
        for (int i = 1; i <= m; ++i)
        {
            int k = b[i];
            while (k != 1)
            {
                t2[pos[z[k]]]++;
                k /= z[k];
            }
        }
        for (int i = 1; i <= tot; ++i)
        {
            t1[i] = min(t1[i], t2[i]);
            t2[i] = t1[i];
        }
        printf("%d %d
    ", n, m);
        for (int i = 1; i <= n; ++i)
        {
            int k = a[i], p = a[i];
            while (k != 1)
            {
                if (t1[pos[z[k]]])
                {
                    p /= z[k];
                    t1[pos[z[k]]]--;
                }
                k /= z[k];
            }
            printf("%d ", p);
        }
        printf("
    ");
        for (int i = 1; i <= m; ++i)
        {
            int k = b[i], p = b[i];
            while (k != 1)
            {
                if (t2[pos[z[k]]])
                {
                    p /= z[k];
                    t2[pos[z[k]]]--;
                }
                k /= z[k];
            }
            printf("%d ", p);
        }
        printf("
    ");
        return 0;
    }
    
  • 相关阅读:
    lda spark 代码官方文档
    4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造
    CF R 635 div1 C Kaavi and Magic Spell 区间dp
    CF R 635 div2 1337D Xenia and Colorful Gems 贪心 二分 双指针
    luogu P5043 【模板】树同构 hash 最小表示法
    CF R 633 div 1 1338 C. Perfect Triples 打表找规律
    CF 633 div1 1338 B. Edge Weight Assignment 构造
    4.15 省选模拟赛 哈密顿回路 折半搜索 双指针
    4.15 省选模拟赛 编码 trie树 前缀和优化建图 2-sat
    4.13 省选模拟赛 守卫 点分治 虚树
  • 原文地址:https://www.cnblogs.com/lunatic-talent/p/12798408.html
Copyright © 2011-2022 走看看