zoukankan      html  css  js  c++  java
  • 数学--数论--Alice and Bob (CodeForces

    It is so boring in the summer holiday, isn't it? So Alice and Bob have invented a new game to play. The rules are as follows. First, they get a set of n distinct integers. And then they take turns to make the following moves. During each move, either Alice or Bob (the player whose turn is the current) can choose two distinct integers x and y from the set, such that the set doesn't contain their absolute difference |x - y|. Then this player adds integer |x - y| to the set (so, the size of the set increases by one).
    
    If the current player has no valid move, he (or she) loses the game. The question is who will finally win the game if both players play optimally. Remember that Alice always moves first.
    

    Input

    The first line contains an integer n (2 ≤ n ≤ 100) — the initial number of elements in the set. The second line contains n distinct space-separated integers a1, a2,..., an (1 ≤ ai ≤ 109) — the elements of the set.
    

    Output

    Print a single line with the winner's name. If Alice wins print "Alice", otherwise print "Bob" (without quotes).
    

    Examples

    Input
    2
    2 3
    Output
    Alice
    Input
    2
    5 3
    Output
    Alice
    Input
    3
    5 6 7
    Output
    Bob
    

    Note

    Consider the first test sample. Alice moves first, and the only move she can do is to choose 2 and 3, then to add 1 to the set. Next Bob moves, there is no valid move anymore, so the winner is Alice.
    

    游戏结束的标志是无法取出两个数字,他们的差值不在序列中。也就是说,最终状态是一个首项等于公差的等差序列。

    求出这个等差数列的项数-n,就是游戏进行的回合。所以我们要先求出首项。设首项为d,接下来就是d+d,d+2d….

    后面几项都是首项的倍数,所以我们可以用gcd(a1,a2,a3…an)求出。ans = an / gcd(a1,a2…an) - n;

    #include <bits/stdc++.h>
    using namespace std;
    int gcd(int a,int b)
    {
    	return b==0? a:gcd(b,a%b);
    }
    int a[101];
    int main()
    {
       int n;
       int maxn = 0;
       scanf("%d", &n);
       for(int i=0;i<n;i++)
         {
    	  scanf("%d", &a[i]);
    	  maxn = max(maxn, a[i]);
         }  
    	int tmp = maxn;
        
    	for(int i=0; i<n; i++)
         {
         	tmp = gcd(tmp,a[i]);
         }
       int x =  maxn/tmp - n;
       if(x%2==1)
       printf("Alice
    ");
       else
       printf("Bob
    ");
       return 0;
    }
    
  • 相关阅读:
    Android 文件操作
    win7 jar文件打不开解决的办法
    工作年限
    mvc wcf 并发提示,存储Application,验证是否有用户在操作
    WCF理论 【转载】
    jQuery
    Entity Framework 新增实体,新增抽象实体
    Entity Framework 的枚举类型
    vs2013+sql server2012 +win8.1+entity framework + linq
    Entity Framework 的事务
  • 原文地址:https://www.cnblogs.com/lunatic-talent/p/12798436.html
Copyright © 2011-2022 走看看