zoukankan      html  css  js  c++  java
  • 网络流--最大流--POJ 1273 Drainage Ditches

    链接

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
    

    Sample Output

    50

    模板题,题意很明了,直接测板子。

    #include<cstdio>
    #include<cstring>
    #include<queue>
    #define INF 1e9
    using namespace std;
    const int maxn=200+5;
    
    struct Edge
    {
        int from,to,cap,flow;
        Edge() {}
        Edge(int f,int t,int c,int flow):from(f),to(t),cap(c),flow(flow) {}
    };
    
    struct Dinic
    {
        int n,m,s,t;
        vector<Edge> edges;
        vector<int> G[maxn];
        bool vis[maxn];
        int cur[maxn];
        int d[maxn];
    
        void init(int n,int s,int t)
        {
            this->n=n, this->s=s, this->t=t;
            edges.clear();
            for(int i=1; i<=n; i++)
                G[i].clear();
        }
    
        void AddEdge(int from,int to,int cap)
        {
            edges.push_back(Edge(from,to,cap,0));
            edges.push_back(Edge(to,from,0,0));
            m = edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
    
        bool BFS()
        {
            memset(vis,0,sizeof(vis));
            queue<int> Q;
            d[s]=0;
            Q.push(s);
            vis[s]=true;
            while(!Q.empty())
            {
                int x=Q.front();
                Q.pop();
                for(int i=0; i<G[x].size(); i++)
                {
                    Edge& e=edges[G[x][i]];
                    if(!vis[e.to] && e.cap>e.flow)
                    {
                        vis[e.to]=true;
                        Q.push(e.to);
                        d[e.to]= 1+d[x];
                    }
                }
            }
            return vis[t];
        }
    
        int DFS(int x,int a)
        {
            if(x==t || a==0)
                return a;
            int flow=0,f;
            for(int& i=cur[x]; i<G[x].size(); i++)
            {
                Edge& e=edges[G[x][i]];
                if(d[x]+1==d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow) ))>0 )
                {
                    e.flow+=f;
                    edges[G[x][i]^1].flow -=f;
                    flow+=f;
                    a-=f;
                    if(a==0)
                        break;
                }
            }
            return flow;
        }
    
        int Maxflow()
        {
            int flow=0;
            while(BFS())
            {
                memset(cur,0,sizeof(cur));
                flow += DFS(s,INF);
            }
            return flow;
        }
    } DC;
    
    int main()
    {
        int n,m,t;
        while(scanf("%d%d",&m,&n)==2){
            DC.init(n,1,n);
            while(m--)
            {
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                DC.AddEdge(u,v,w);
            }
            printf("%d
    ",DC.Maxflow());
        }
        return 0;
    }
    
  • 相关阅读:
    dubbo熔断,限流,服务降级
    jmeter命令行运行与生成报告
    Java堆内存设置
    性能测试之互联网应用需求建模分析
    java命令--jmap命令使用(查找内存泄漏对象)
    WPS宏不可用解决方法
    JDBC
    异常
    Java中常用集合操作
    java抽象、接口 和final
  • 原文地址:https://www.cnblogs.com/lunatic-talent/p/12798632.html
Copyright © 2011-2022 走看看