zoukankan      html  css  js  c++  java
  • 图论--边双连通V-DCC缩点

    // tarjan算法求无向图的割点、点双连通分量并缩点
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    using namespace std;
    const int SIZE = 100010;
    int head[SIZE], ver[SIZE * 2], Next[SIZE * 2];
    int dfn[SIZE], low[SIZE], stack[SIZE], new_id[SIZE], c[SIZE];
    int n, m, tot, num, root, top, cnt, tc;
    bool cut[SIZE];
    vector<int> dcc[SIZE];
    int hc[SIZE], vc[SIZE * 2], nc[SIZE * 2];
    
    void add(int x, int y) {
    	ver[++tot] = y, Next[tot] = head[x], head[x] = tot;
    }
    
    void add_c(int x, int y) {
    	vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc;
    }
    
    void tarjan(int x) {
    	dfn[x] = low[x] = ++num;
    	stack[++top] = x;
    	if (x == root && head[x] == 0) { // 孤立点
    		dcc[++cnt].push_back(x);
    		return;
    	}
    	int flag = 0;
    	for (int i = head[x]; i; i = Next[i]) {
    		int y = ver[i];
    		if (!dfn[y]) {
    			tarjan(y);
    			low[x] = min(low[x], low[y]);
    			if (low[y] >= dfn[x]) {
    				flag++;
    				if (x != root || flag > 1) cut[x] = true;
    				cnt++;
    				int z;
    				do {
    					z = stack[top--];
    					dcc[cnt].push_back(z);
    				} while (z != y);
    				dcc[cnt].push_back(x);
    			}
    		}
    		else low[x] = min(low[x], dfn[y]);
    	}
    }
    
    int main() {
    	cin >> n >> m;
    	tot = 1;
    	for (int i = 1; i <= m; i++) {
    		int x, y;
    		scanf("%d%d", &x, &y);
    		if (x == y) continue;
    		add(x, y), add(y, x);
    	}
    	for (int i = 1; i <= n; i++)
    		if (!dfn[i]) root = i, tarjan(i);
    	for (int i = 1; i <= n; i++)
    		if (cut[i]) printf("%d ", i);
    	puts("are cut-vertexes");
    	for (int i = 1; i <= cnt; i++) {
    		printf("v-DCC #%d:", i);
    		for (int j = 0; j < dcc[i].size(); j++)
    			printf(" %d", dcc[i][j]);
    		puts("");
    	}
    	// 给每个割点一个新的编号(编号从cnt+1开始)
    	num = cnt;
    	for (int i = 1; i <= n; i++)
    		if (cut[i]) new_id[i] = ++num;
    	// 建新图,从每个v-DCC到它包含的所有割点连边
    	tc = 1;
    	for (int i = 1; i <= cnt; i++)
    		for (int j = 0; j < dcc[i].size(); j++) {
    			int x = dcc[i][j];
    			if (cut[x]) {
    				add_c(i, new_id[x]);
    				add_c(new_id[x], i);
    			}
    			else c[x] = i; // 除割点外,其它点仅属于1个v-DCC
    		}
    	printf("缩点之后的森林,点数 %d,边数 %d
    ", num, tc / 2);
    	printf("编号 1~%d 的为原图的v-DCC,编号 >%d 的为原图割点
    ", cnt, cnt);
    	for (int i = 2; i < tc; i += 2)
    		printf("%d %d
    ", vc[i ^ 1], vc[i]);
    }
  • 相关阅读:
    数与bit
    ARM汇编优化1
    一 *(a+1)与*(&a+1)
    二 *(a+1)多维数组
    三 二维数组取址
    四 sizeof(a)
    永恒之蓝及WannaCry分析
    github使用记录
    三种页面置换算法的C++模拟
    opencv检测图像直线
  • 原文地址:https://www.cnblogs.com/lunatic-talent/p/12798658.html
Copyright © 2011-2022 走看看