本博客参考了李煜东的《算法竞赛进阶指南》,大家要是觉得这篇文章写的不错请大家支持正版。豆瓣图书
我在之前的博客中讲解了搜索序时间戳,这次我们讲讲追溯值的概念。
追溯值:
设subtree(x)表示搜索树中,以X为根的子树。low[x]定义为一下节点的时间戳最小值:
1.subtree(x)中的节点。
2.通过1条不在搜素树上的边,能够到达subtree(x)的节点。
以上图为例。为了叙述简便,我们用时间戳代替节点编号。subtree(2)={2,3,4,5}。零位,节点1通过搜索树边的(1,5)能够到达subtree(2)。所以low[2]=1。根据定义拉算的话,首先应该让low[x]=dfn[x],然后考虑从x出发的每条边(x,y);
若在搜素树上x是y 的父节点,则令low[x]=min(low[x],low[y]).
若无向边(x,y)不是搜索树边,则令low[x]=min(low[x],dfn[y]).
该图中写出了追溯值的 图。
割边的判定法则:
无向边x---y如果是桥,当且仅当搜索树上存在x的存在y满足 dfn[x]<low[y],说明从y出发不可能通过非搜索树边回到x。也即是x--y是桥。
//模板
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <stack>
using namespace std;
const int N=100010;
int head[N],ver[N*2],Next[N*2];
int dfn[N],low[N],n,m,tot,num;
bool brige[N*2];
void add(int x,int y){
ver[++tot]=y,Next[tot]=head[x],head[x]=tot;
}
void tarjan(int x,int inedge)
{
dfn[x]=low[x]=++num;
for(int i=head[x];i;i=Next[i])
{
int y=ver[i];
if(!dfn[y])
{
tarjan(y,i);
low[x]=min(low[x],low[y]);
if(low[y]>dfn[x])
{
brige[i]=brige[i^1]=1;
}
}
else if(i!=(inedge^1))
low[x]=min(low[x],dfn[y]);
}
}
int main()
{
cin>>n>>m;
tot=1;
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d %d",&x,&y);
add(x,y);
add(y,x);
}
for(int i=1 ;i<=n;i++)
if(!dfn[i]) tarjan(i,0);
int ans=0;
for(int i=2;i<tot;i+=2)
{
if(brige[i])
{
printf("%d %d
",ver[i^1],ver[i]);
}
}
}