zoukankan      html  css  js  c++  java
  • 2016天池-O2O优惠券使用预测竞赛总结

      第一次参加数据预测竞赛,发现还是挺有意思的。本文中的部分内容参考第一名“诗人都藏在水底”的解决方案

      从数据划分、特征提取、模型设计、模型融合/优化,整个业务流程得到了训练。作为新手在数据划分和模型训练以及模型融合上做的不够好(都是套路)。

      首先,数据划分方式最自然的按照月份-》后面的月份这种自然顺序(滑窗)即可,在整个数据集上做特征提取实在是不能发挥出 特征的优势,因为数据量本身挺大,太多的脏数据,会导致训练出的模型不准确。

    看来这个竞赛并没有涉及到太多的数据清洗处理等工作。

      

      

      用户特征、商户特征、优惠券相关的特征、用户-商家交互特征有很多。

      

       从单模型到多模型的加权融合。每一个模型都是在训练集上调优到极限的。所以调模型并不是一个不重要的工作。主流的回归模型果然还是GBDT嘴刁,

    XGBoost,GBDT,RandomForest这三种是他们用的主要模型。

       

  • 相关阅读:
    BootstrapTable表格数据左右移动功能遇到的问题(数据左右移动,列表拖拽排序,模糊查询列表数据定位)
    MVC校验
    线程
    验证码
    PublicLogic
    进程
    请求处理过程
    上传组件
    委托
    Global全局应用程序类
  • 原文地址:https://www.cnblogs.com/luntai/p/6273877.html
Copyright © 2011-2022 走看看