题目:
e= 18437613570247445737704630776150775735509244525633303532921813122997549954741828855898842356900537746647414676272022397989161180996467240795661928117273837666615415153571959258847829528131519423486261757569454011940318849589730152031528323576997801788206457548531802663834418381061551227544937412734776581781 n= 147282573611984580384965727976839351356009465616053475428039851794553880833177877211323318130843267847303264730088424552657129314295117614222630326581943132950689147833674506592824134135054877394753008169629583742916853056999371985307138775298080986801742942833212727949277517691311315098722536282119888605701 c= 140896698267670480175739817539898638657099087197096836734243016824204113452987617610944986742919793506024892638851339015015706164412994514598564989374037762836439262224649359411190187875207060663509777017529293145434535056275850555331099130633232844054767057175076598741233988533181035871238444008366306956934
给了e、n、c求明文,使用前辈写的脚本:
import gmpy2 import time def continuedFra(x, y): cF = [] while y: cF += [x / y] x, y = y, x % y return cF def Simplify(ctnf): numerator = 0 denominator = 1 for x in ctnf[::-1]: numerator, denominator = denominator, x * denominator + numerator return (numerator, denominator) def calculateFrac(x, y): cF = continuedFra(x, y) cF = map(Simplify, (cF[0:i] for i in xrange(1, len(cF)))) return cF def solve_pq(a, b, c): par = gmpy2.isqrt(b * b - 4 * a * c) return (-b + par) / (2 * a), (-b - par) / (2 * a) def wienerAttack(e, n): for (d, k) in calculateFrac(e, n): if k == 0: continue if (e * d - 1) % k != 0: continue phi = (e * d - 1) / k p, q = solve_pq(1, n - phi + 1, n) if p * q == n: return abs(int(p)), abs(int(q)) print 'not find!' time.clock() e= 18437613570247445737704630776150775735509244525633303532921813122997549954741828855898842356900537746647414676272022397989161180996467240795661928117273837666615415153571959258847829528131519423486261757569454011940318849589730152031528323576997801788206457548531802663834418381061551227544937412734776581781 n= 147282573611984580384965727976839351356009465616053475428039851794553880833177877211323318130843267847303264730088424552657129314295117614222630326581943132950689147833674506592824134135054877394753008169629583742916853056999371985307138775298080986801742942833212727949277517691311315098722536282119888605701 c= 140896698267670480175739817539898638657099087197096836734243016824204113452987617610944986742919793506024892638851339015015706164412994514598564989374037762836439262224649359411190187875207060663509777017529293145434535056275850555331099130633232844054767057175076598741233988533181035871238444008366306956934 p, q = wienerAttack(e, n) print '[+]Found!' print ' [-]p =',p print ' [-]q =',q print ' [-]n =',p*q d = gmpy2.invert(e,(p-1)*(q-1)) print ' [-]d =', d print ' [-]m is:' + '{:x}'.format(pow(c,d,n)).decode('hex') print ' [!]Timer:', round(time.clock(),2), 's' print '[!]All Done!'