zoukankan      html  css  js  c++  java
  • Hadoop mapreduce自定义排序WritableComparable

    本文发表于本人博客

        今天继续写练习题,上次对分区稍微理解了一下,那根据那个步骤分区、排序、分组、规约来的话,今天应该是要写个排序有关的例子了,那好现在就开始!

         说到排序我们可以查看下hadoop源码里面的WordCount例子中对LongWritable类型定义,它实现抽象接口WritableComparable,代码如下:

    public interface WritableComparable<T> extends Writable, Comparable<T> {
    }
    public interface Writable {
      void write(DataOutput out) throws IOException;
      void readFields(DataInput in) throws IOException;
    }

    其中Writable抽象接口定义了write以及readFields方法,分别是写入数据流以及读取数据流。而Comparable中又有compareTo方法定义比较。竟然hadoop的内置类型有比较大小功能,那么它使用这个内置类型作为map端输出的话是怎么样去排序的,这个问题我们先来查看下map任务类MapTask源代码,内部有内置MapOutputBuffer类,在spill accounting注释下面有个排序字段:

    private final IndexedSorter sorter;

    这个字段是由:

    sorter = ReflectionUtils.newInstance(job.getClass("map.sort.class", QuickSort.class, IndexedSorter.class), job);

    可以看出,这个排序算法可以在配置文件中指定,不过默认是快速排序QuickSort。这个QuickSort内部有几个重要的方法:

    public void sort(final IndexedSortable s, int p, int r,final Progressable rep);
    private static void sortInternal(final IndexedSortable s, int p, int r,final Progressable rep, int depth);

    其中在传递参数IndexSortable的时候是用MapOutputBuffer当前来传递,因为这个MapOutputBuffer也继承IndexedSortable.这样在QuickSort排序sort中就会使用MapOutputBuffer类中的compare方法进行比较,可以看下面源代码:

        public int compare(int i, int j) {
          final int ii = kvoffsets[i % kvoffsets.length];
          final int ij = kvoffsets[j % kvoffsets.length];
          // sort by partition
          if (kvindices[ii + PARTITION] != kvindices[ij + PARTITION]) {
            return kvindices[ii + PARTITION] - kvindices[ij + PARTITION];
          }
          // sort by key
          return comparator.compare(kvbuffer,
              kvindices[ii + KEYSTART],
              kvindices[ii + VALSTART] - kvindices[ii + KEYSTART],
              kvbuffer,
              kvindices[ij + KEYSTART],
              kvindices[ij + VALSTART] - kvindices[ij + KEYSTART]);
        }

    然而这个方法中comparator默认是由节点“mapred.output.key.comparator.class”决定,也可以看源码:

      public RawComparator getOutputKeyComparator() {
        Class<? extends RawComparator> theClass = getClass("mapred.output.key.comparator.class",
                null, RawComparator.class);
        if (theClass != null)
          return ReflectionUtils.newInstance(theClass, this);
        return WritableComparator.get(getMapOutputKeyClass().asSubclass(WritableComparable.class));
      }

    就是这样把排序以及比较方法关联起来了!那现在我们可以按照LongWritable的思路实现自己的自定义类型并且读取、写入、比较。下面写写代码加深下记忆,既然是排序那我们准备下数据,如下有2列数据要求按照第一列升序,第二列降序排序:

    1    2
    1    1
    3    0
    3    2
    2    2
    1    2

    先自定义类型SortAPI:

    public class SortAPI implements WritableComparable<SortAPI> {
        /**
         * 第一列数据
         */
        public Long first;
        /**
         * 第二列数据
         */
        public Long second;
        
        public SortAPI(){}
        public SortAPI(long first,long second){
            this.first = first;
            this.second = second;
        }
        /**
         * 排序就在这里当:this.first - o.first > 0 升序,小于0倒序
         */
        @Override
        public int compareTo(SortAPI o) {
            long mis = (this.first - o.first);
            if(mis != 0 ){
                return (int)mis;
            }
            else{
                return (int)(this.second - o.second);
            }
        }
    
        @Override
        public void write(DataOutput out) throws IOException {
            out.writeLong(first);
            out.writeLong(second);
        }
    
        @Override
        public void readFields(DataInput in) throws IOException {
            this.first = in.readLong();
            this.second = in.readLong();
            
        }
    
        @Override
        public int hashCode() {
            return this.first.hashCode() + this.second.hashCode();
        }
    
        @Override
        public boolean equals(Object obj) {
            if(obj instanceof SortAPI){
                SortAPI o = (SortAPI)obj;
                return this.first == o.first && this.second == o.second;
            }
            return false;
        }
        @Override
        public String toString() {
            return "first:" + this.first + "second:" + this.second;
        }
    }

    这类型重写compareTo(SortAPI o)、write(DataOutput out)、readFields(DataInput in),既然是有比较那么以前说的就一定要重写hashCode()、equals(Object obj)方法了,这点不要忘记!还需要主要在write方法以及readFields方法中读写是有顺序:先write什么字段就先read什么字段。其次这个compareTo(SortAPI o)方法中返回是整型大于0、0、以及小于0代表大于、等于、小于。至于怎么判断2行数据是不是相等,不相等怎么比较着逻辑可以慢慢看下。

    下面写个自定义Mapper、Reducer类以及main函数:

    public class MyMapper extends Mapper<LongWritable, Text, SortAPI, LongWritable> {
            
        @Override
        protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException {
            String[] splied = value.toString().split("	");
            try {
                long first = Long.parseLong(splied[0]);
                long second = Long.parseLong(splied[1]);
                context.write(new SortAPI(first,second), new LongWritable(1));
            } catch (Exception e) {
                System.out.println(e.getMessage());
            }
        }
    }
    public class MyReduce extends Reducer<SortAPI, LongWritable, LongWritable, LongWritable> {
    
        @Override
        protected void reduce(SortAPI key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
            context.write(new LongWritable(key.first), new LongWritable(key.second));
        }
        
    }
        static final String OUTPUT_DIR = "hdfs://hadoop-master:9000/sort/output/";
        static final String INPUT_DIR = "hdfs://hadoop-master:9000/sort/input/test.txt";
        
        public static void main(String[] args) throws Exception {
            Configuration conf = new Configuration();
            Job job = new Job(conf, Test.class.getSimpleName());        
            deleteOutputFile(OUTPUT_DIR);
            
            //1设置输入目录
            FileInputFormat.setInputPaths(job, INPUT_DIR);
            //2设置输入格式化类
            job.setInputFormatClass(TextInputFormat.class);
            //3设置自定义Mapper以及键值类型
            job.setMapperClass(MyMapper.class);
            job.setMapOutputKeyClass(SortAPI.class);
            job.setMapOutputValueClass(LongWritable.class);
            //4分区
            job.setPartitionerClass(HashPartitioner.class);
            job.setNumReduceTasks(1);
            
            //5排序分组
            //6设置在一定Reduce以及键值类型
            job.setReducerClass(MyReduce.class);
            job.setOutputKeyClass(LongWritable.class);
            job.setOutputValueClass(LongWritable.class);
            //7设置输出目录
            FileOutputFormat.setOutputPath(job, new Path(OUTPUT_DIR));
            //8提交job
            job.waitForCompletion(true);
        }
        
        static void deleteOutputFile(String path) throws Exception{
            Configuration conf = new Configuration();
            FileSystem fs = FileSystem.get(new URI(INPUT_DIR),conf);
            if(fs.exists(new Path(path))){
                fs.delete(new Path(path));
            }
        }

    这样在eclipse下就可以直接运行查看结果:

    1       1
    1       2
    2       2
    3       0
    3       2

    这结果正确,那如果要求第一列倒叙第二列升序呢,怎么办,这只需要修改下compareTo(SortAPI o):

        @Override
        public int compareTo(SortAPI o) {
            long mis = (this.first - o.first) * -1 ;
            if(mis != 0 ){
                return (int)mis;
            }
            else{
                return (int)(this.second - o.second);
            }
        }

    这样保存在运行,结果:

    3       0
    3       2
    2       2
    1       1
    1       2

    也正确吧符合自己的这个要求。

    留个小问题:这个compareTo(SortAPI o)方法在什么时候调用了,总共调用了几次?

    这次先到这里。坚持记录点点滴滴!


  • 相关阅读:
    zookeeper3.5.6单机集群环境搭建
    mycat分表
    myacat分片及全局表定义
    装饰器
    函数参数,作用域
    可变,不可变,无序, 有序
    dict
    列表可变,元祖不可变
    列表操作
    字符串find
  • 原文地址:https://www.cnblogs.com/luoliang/p/4186650.html
Copyright © 2011-2022 走看看