zoukankan      html  css  js  c++  java
  • hdu3507_斜率dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3507

    Print Article

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 9699    Accepted Submission(s): 3066


    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5 5 9 5 7 5
     
    Sample Output
    230

    推荐博客:http://blog.csdn.net/azheng51714/article/details/8214165

     1 //dp[i]=dp[j]+M+(sum[i]-sum[j])^2
     2 //设k<j<i, j比k决策好
     3 //dp[j]+M+(sum[i]-sum[j])^2<dp[k]+M+(sum[i]-sum[k])^2
     4 //(dp[j]+num[j]^2-(dp[k]+num[k]^2))/(2*(num[j]-num[k]))<sum[i]
     5 //dp[j]+num[j]^2-(dp[k]+num[k]^2))  GetUp()
     6 //2*(num[j]-num[k])  GetDown()
     7 #include <algorithm>
     8 #include <iostream>
     9 #include <cstring>
    10 #include <cstdlib>
    11 #include <cstdio>
    12 #include <vector>
    13 #include <ctime>
    14 #include <queue>
    15 #include <list>
    16 #include <set>
    17 #include <map>
    18 using namespace std;
    19 #define INF 0x3f3f3f3f
    20 typedef long long LL;
    21 
    22 int dp[500010], n, m, sum[500010], q[500010];
    23 int GetDp(int i, int j)
    24 {
    25     return dp[j] + m + (sum[i]-sum[j])*(sum[i]-sum[j]);
    26 }
    27 int GetUp(int j, int k)//yj-yk的部分
    28 {
    29     return dp[j] + sum[j]*sum[j] - (dp[k]+sum[k]*sum[k]);
    30 }
    31 int GetDown(int j, int k)//xj-xk的部分
    32 {
    33     return 2 * (sum[j] - sum[k]);
    34 }
    35 int main()
    36 {
    37     while(~scanf("%d %d", &n, &m))
    38     {
    39         sum[0] = dp[0] = 0;
    40         for(int i = 1; i <= n; i++){
    41             scanf("%d", &sum[i]);
    42             sum[i] += sum[i-1];
    43         }
    44         int head = 0, tail = 0;
    45         q[tail++] = 0;
    46         for(int i = 1; i <=n; i++)
    47         {
    48             while(head+1<tail && GetUp(q[head+1],q[head])<=sum[i]*GetDown(q[head+1],q[head]))
    49                 head++;
    50             dp[i] = GetDp(i, q[head]);
    51             while(head+1<tail && GetUp(i, q[tail-1])*GetDown(q[tail-1],q[tail-2])<=GetUp(q[tail-1],q[tail-2])*GetDown(i,q[tail-1]))
    52                 tail--;
    53             q[tail++] = i;
    54         }
    55         printf("%d
    ", dp[n]);
    56     }
    57     return 0;
    58 }
    View Code
  • 相关阅读:
    工厂模式 ioc dom4j 反射之我的一点理解
    hibernate中注解方式中的控制反转
    java中的数据存储(堆,栈) 很重要
    hibernate中映射关系总结
    三极管使用方法
    OC OD介绍
    HP Jack介绍
    Jlink接口的Jtag和SWD接口定义
    什么是域什么是工作组
    Ubuntu安装.run文件
  • 原文地址:https://www.cnblogs.com/luomi/p/5867993.html
Copyright © 2011-2022 走看看