zoukankan      html  css  js  c++  java
  • lightoj1125_dp

    http://lightoj.com/volume_showproblem.php?problem=1125

    Given a list of N numbers you will be allowed to choose any M of them. So you can choose in NCM ways. You will have to determine how many of these chosen groups have a sum, which is divisible by D.

    Input

    Input starts with an integer T (≤ 20), denoting the number of test cases.

    The first line of each case contains two integers N (0 < N ≤ 200) and Q (0 < Q ≤ 10). Here N indicates how many numbers are there and Q is the total number of queries. Each of the next N lines contains one 32 bit signed integer. The queries will have to be answered based on these N numbers. Each of the next Q lines contains two integers D (0 < D ≤ 20)and M (0 < M ≤ 10).

    Output

    For each case, print the case number in a line. Then for each query, print the number of desired groups in a single line.

    Sample Input

    Output for Sample Input

    2

    10 2

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    5 1

    5 2

    5 1

    2

    3

    4

    5

    6

    6 2

    Case 1:

    2

    9

    Case 2:

    1

     1 #include <algorithm>
     2 #include <iostream>
     3 #include <cstring>
     4 #include <cstdlib>
     5 #include <cstdio>
     6 #include <vector>
     7 #include <ctime>
     8 #include <queue>
     9 #include <list>
    10 #include <set>
    11 #include <map>
    12 using namespace std;
    13 #define INF 0x3f3f3f3f
    14 typedef long long LL;
    15 
    16 int a[210], d[20], m[20];
    17 LL dp[210][30][20];//dp[i][j][k]表示遍历2到第i个数,选了j个数,余数为k时的方案有多少
    18 int main()
    19 {
    20     int t, n, q;
    21     scanf("%d", &t);
    22     for(int ca = 1; ca <= t; ca++)
    23     {
    24         scanf("%d %d", &n, &q);
    25         for(int i = 1; i <= n; i++)
    26             scanf("%d", &a[i]);
    27         for(int i = 1; i <= q; i++)
    28             scanf("%d %d", &d[i], &m[i]);
    29         printf("Case %d:
    ", ca);    
    30         for(int l = 1; l <= q; l++)
    31         {
    32             memset(dp, 0, sizeof(dp));
    33             for(int i = 0; i <= n; i++)
    34                 dp[i][0][0] = 1;
    35             for(int i = 1; i <= n; i++)
    36             {
    37                 for(int j = 1; j <= m[l]; j++)
    38                 {
    39                     for(int k = 0; k < d[l]; k++)
    40                     {
    41                         dp[i][j][k] += dp[i-1][j][k];
    42                         dp[i][j][((k+a[i])%d[l]+d[l])%d[l]] += dp[i-1][j-1][k];
    43                     }
    44                 }
    45             }
    46             printf("%lld
    ", dp[n][m[l]][0]);
    47         }
    48     }
    49     return 0;
    50 }
  • 相关阅读:
    Linux安装oracle 10g常见问题之——ORA-01078,LRM-00109,ORA-01102
    Linux安装oracle 10g常见问题之——OUI-25031
    C#中static静态变量的用法
    让DIV中的内容水平和垂直居中
    json对象与json字符串互换
    AJAX请求 $.post方法的使用
    .NET(c#)new关键字的三种用法
    创建数据库和表的SQL语句
    SQL、LINQ、Lambda 三种用法(转)
    AJAX中UPDATEPANEL配合TIMER控件实现局部无刷新
  • 原文地址:https://www.cnblogs.com/luomi/p/5964713.html
Copyright © 2011-2022 走看看