Problem
Description
给定一个圆,圆上均等地放着 (2n) 个点,已有 (k) 对点之间连好了边,从中选择剩下 (n-k) 对点随意连边。
求所有连边方案中,联通块的个数和。
联通块的定义为:若两对点之间的线段相交,则在一个联通块内。
Range
(1le kle nle300)
Algorithm
(DP)
Mentality
很奇妙的题目。
我们转换成考虑每对点对的贡献。
设 (f_{i,j}) 表示 (i,j) 相连,且 (i,j) 之间的所有点连的边都不与边 (i,j) 相交的方案数。
则可以考虑用 (i,j) 之间的点随便连的方案数减去 (i,j) 不联通的方案数。
考虑枚举一个 (i<k<j) ,钦定 (i,k) 相连,然后 (k+1,j) 之间的点随便连即可。
那么设 (g_i) 为 (i) 个点之间随便连的方案数,则 (i) 必须为偶数。
设 (F(i,j)) 为 (i,j) 之间没有被钦定的点数。
则有:
[f_{i,j}=g_{F(i,j)} - sum_{k=i+1}^{j-1} f_{i,k}*g_{F(k+1,j)}
]
那么最后的答案自然为每个点对构成的联通块的贡献:
[ans=sum f_{i,j}*g_{F(1,i-1)+F(j+1,2*n)}
]
Code
#include <algorithm>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <vector>
using namespace std;
long long read() {
long long x = 0, w = 1;
char ch = getchar();
while (!isdigit(ch)) w = ch == '-' ? -1 : 1, ch = getchar();
while (isdigit(ch)) {
x = (x << 3) + (x << 1) + ch - '0';
ch = getchar();
}
return x * w;
}
const int Max_n = 605, mod = 1e9 + 7;
int n, K, m, ans;
int to[Max_n], s[Max_n];
int f[Max_n][Max_n], g[Max_n];
int F(int l, int r) {
if (l > r) return 0;
return r - l + 1 - s[r] + s[l - 1];
}
int main() {
#ifndef ONLINE_JUDGE
freopen("D.in", "r", stdin);
freopen("D.out", "w", stdout);
#endif
n = read() << 1, m = read() << 1, g[0] = 1;
int u, v;
for (int i = 1; i <= (m >> 1); i++) {
u = read(), v = read();
to[u] = v, to[v] = u, s[u] = s[v] = 1;
}
for (int i = 1; i <= n; i++) s[i] += s[i - 1];
for (int i = 2; i <= n; i += 2) g[i] = 1ll * (i - 1) * g[i - 2] % mod;
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
if ((j - i) & 1) {
bool fl = 0;
for (int k = i; k <= j; k++)
if (to[k] && (to[k] < i || to[k] > j)) fl = 1;
if (fl) continue;
f[i][j] = g[F(i, j)];
for (int k = i + 1; k < j; k++)
f[i][j] =
(f[i][j] - 1ll * f[i][k] * g[F(k + 1, j)] % mod + mod) % mod;
ans = (ans + 1ll * f[i][j] * g[F(1, i - 1) + F(j + 1, n)] % mod) % mod;
}
cout << ans;
}