Time limit : 2sec / Memory limit : 256MB
Score : 200 points
Problem Statement
We have an integer sequence A, whose length is N.
Find the number of the non-empty contiguous subsequences of A whose sums are 0. Note that we are counting the ways to take out subsequences. That is, even if the contents of some two subsequences are the same, they are counted individually if they are taken from different positions.
Constraints
- 1≤N≤2×105
- −109≤Ai≤109
All values in input are integers.
https://agc023.contest.atcoder.jp/tasks/agc023_a
题意:给一个数组求出数组中连续字串合为0的个数
Solution
n的平方算法会超时,一开始想着dp可是空间也不够;
首先看样例
6 1 3 -4 2 2 -2
我们计算前面的合为
1 4 0 2 4 2
我们可以发现相同的两个数之间之间经过的数的合一定是0;
例如第一个4 和第二个4 之间是 -4 + 2 +2=0所以我们发现规律只要找到相同的数的个数让他们之间两两连接就是个数
如果合为0代表从第一个开始到他的合就是0所以要额外加上0的个数
#include<bits/stdc++.h> #define ll long long using namespace std; const int maxn=250000+50; ll num[maxn]; ll sum[maxn]; ll he(ll n){ if(n==1) return 0; if(n==0) return 0; return (n*(n-1))/2; } map<ll,int>mp; int main() { //std::ios::sync_with_stdio(false); int n; scanf("%d",&n); long long summ=0; memset(sum,0,sizeof(sum)); for(int i=1;i<=n;i++){ scanf("%lld",&num[i]); sum[i]=sum[i-1]+num[i]; } for(int i=1;i<=n;i++){ if(mp[sum[i]]==0)mp[sum[i]]++; else{ mp[sum[i]]++; } } map<ll,int>::iterator it; for(it=mp.begin();it!=mp.end();it++){ //cout<<it->first<<" "<<it->second<<endl; if(it->first==0) summ+=(he(it->second)+(it->second)); else if(it->second>1){ if(it->first!=0) summ+=he(it->second); } } printf("%lld ",summ); return 0; }