zoukankan      html  css  js  c++  java
  • python学习笔记-多进程

    multiprocessing

    from multiprocessing import Process
    import time
    def f(name):
        time.sleep(2)
        print('hello',name)
    
    if __name__ == '__main__':
        p1 = Process(target=f,args = ('bob',))
        p2 = Process(target=f,args=('john',))
        p1.start()
        p2.start()
        p1.join()

    显示进程ID 

    # !/usr/bin/env python
    # -*- coding:utf-8 -*-
    
    from multiprocessing import Process
    import os
    
    def info(title):
        print(title)
        print('module name:', __name__)
        print('parent process:', os.getppid()) # 父进程ID
        print('process id:', os.getpid()) #自己的进程ID
        print("
    
    ")
    
    def f(name):
        info('33[31;1mfunction f33[0m')
        print('hello', name)
    
    if __name__ == '__main__':
        info('33[32;1mmain process line33[0m')
        p = Process(target=info, args=('bob',))
        p.start()
        p.join()

    进程间通讯

    不同进程间内存是不共享的,要想实现两个进程间的数据交换,可以用以下方法:

    Queues

    # !/usr/bin/env python
    # -*- coding:utf-8 -*-
    from multiprocessing import Process, Queue
    
    def f(q):
        q.put([42, None, 'hello'])
    
    if __name__ == '__main__':
        q = Queue() #创建队列
        p = Process(target=f, args=(q,))
        p2 = Process(target=f, args=(q,))
        p.start()
        p2.start()
        print('from parent',q.get())    #获取子进程put的值
        print('from parent',q.get())
        p.join()

    Pipes

    The Pipe() function returns a pair of connection objects connected by a pipe which by default is duplex (two-way). 

    # !/usr/bin/env python
    # -*- coding:utf-8 -*-
    
    from multiprocessing import Process, Pipe
    
    def f(conn):
        conn.send([42, None, 'hello']) #发送数据
        conn.close()
    
    if __name__ == '__main__':
        parent_conn, child_conn = Pipe()
        p = Process(target=f, args=(child_conn,))
        p2 = Process(target=f, args=(child_conn,))
        p.start()
        p2.start()
        print(parent_conn.recv())  # 接受数据
        print(parent_conn.recv())
        p.join()

    Managers

    A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.

    A manager returned by Manager() will support types listdictNamespaceLockRLockSemaphoreBoundedSemaphoreConditionEventBarrierQueueValue and Array.

    # !/usr/bin/env python
    # -*- coding:utf-8 -*-
    from multiprocessing import Process, Manager
    
    def f(d, l):
        d[1] = '1'
        d['2'] = 2
        d[0.25] = None
        l.append(1)
        print(l)
    
    if __name__ == '__main__':
        with Manager() as manager:
            d = manager.dict()
            l = manager.list(range(5))
            p_list = []
            for i in range(10):
                p = Process(target=f, args=(d, l))
                p.start()
                p_list.append(p)
            for res in p_list:
                res.join()
    
            print(d)
            print(l)

    进程同步

    Without using the lock output from the different processes is liable to get all mixed up.

    from multiprocessing import Process, Lock
     
    def f(l, i):
        l.acquire()
        try:
            print('hello world', i)
        finally:
            l.release()
     
    if __name__ == '__main__':
        lock = Lock()
     
        for num in range(10):
            Process(target=f, args=(lock, num)).start()

    进程池  

    进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。

    进程池中有两个方法:

    • apply
    • apply_async
    from  multiprocessing import Process,Pool,freeze_support
    import time
    
    def Foo(i):
        time.sleep(4)
        print('exec...')
        return i+100
    
    def Bar(arg):
        print('-->exec done:',arg)
    
    
    if __name__ == '__main__':
        freeze_support()
        pool = Pool(5)
        for i in range(100):
            pool.apply_async(func=Foo, args=(i,),callback=Bar)
            #pool.apply(func=Foo, args=(i,))
        print('end')
        pool.close()
        pool.join()
        #pool.join()#进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。
  • 相关阅读:
    AngularJS
    Java
    Java
    AngularJS
    Java
    Java
    AngularJS
    Java
    Debian
    Java
  • 原文地址:https://www.cnblogs.com/luoye00/p/5284308.html
Copyright © 2011-2022 走看看