zoukankan      html  css  js  c++  java
  • Keras 训练 inceptionV3 并移植到OpenCV4.0 in C++

    1. 训练

    # --coding:utf-8--
    import os
    import sys
    import glob
    import argparse
    import matplotlib.pyplot as plt
    
    from keras import __version__
    from keras.applications.inception_v3 import InceptionV3, preprocess_input
    #from keras.applications.inception_v3_matt import InceptionV3, preprocess_input
    
    from keras.models import Model
    from keras.layers import Dense, GlobalAveragePooling2D
    from keras.preprocessing.image import ImageDataGenerator
    from keras.optimizers import SGD
    
    def get_nb_files(directory):
      """Get number of files by searching directory recursively"""
      if not os.path.exists(directory):
        return 0
      cnt = 0
      for r, dirs, files in os.walk(directory):
        for dr in dirs:
          cnt += len(glob.glob(os.path.join(r, dr + "/*")))
      return cnt
    #train_num = get_nb_files('/home/pandafish/AnacondaProjects/Inceptionv3/dataset_my/train')  2500
    #print(train_num)
    #input('wait...')
    
    # 数据准备
    IM_WIDTH, IM_HEIGHT = 299, 299 #InceptionV3指定的图片尺寸
    FC_SIZE = 1024                # 全连接层的节点个数
    ##NB_IV3_LAYERS_TO_FREEZE = 172  # 冻结层的数量
    NB_IV3_LAYERS_TO_FREEZE = 0  # 冻结层的数量
    
    
    train_dir = '/home/dl/local_repo/data/mosaic1/mosaic_train'  # 训练集数据
    val_dir = '/home/dl/local_repo/data/mosaic1/mosaic_valid' # 验证集数据
    output_model_file = '/home/dl/local_repo/data/mosaic1/mosaic.hdf5'
    wights_path = '/home/dl/local_repo/data/mosaic1/mosaic.h5'
    
    
    nb_classes= 2
    nb_epoch = 10
    batch_size = 32
    
    nb_train_samples = get_nb_files(train_dir)      # 训练样本个数
    nb_classes = len(glob.glob(train_dir + "/*"))  # 分类数
    nb_val_samples = get_nb_files(val_dir)       #验证集样本个数
    nb_epoch = int(nb_epoch)                # epoch数量
    batch_size = int(batch_size)           
    
    # 图片生成器
    train_datagen =  ImageDataGenerator(
      preprocessing_function=preprocess_input,
      ##rotation_range=30,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True
    )
    test_datagen = ImageDataGenerator(
      preprocessing_function=preprocess_input,
      ##rotation_range=30,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True
    )
    
    # 训练数据与测试数据
    train_generator = train_datagen.flow_from_directory(
    train_dir,
    target_size=(IM_WIDTH, IM_HEIGHT),
    batch_size=batch_size,class_mode='categorical')
    
    validation_generator = test_datagen.flow_from_directory(
    val_dir,
    target_size=(IM_WIDTH, IM_HEIGHT),
    batch_size=batch_size,class_mode='categorical')
    
    # 添加新层
    def add_new_last_layer(base_model, nb_classes):
      """
      添加最后的层
      输入
      base_model和分类数量
      输出
      新的keras的model
      """
      x = base_model.output
      x = GlobalAveragePooling2D()(x)
      x = Dense(FC_SIZE, activation='relu')(x) #new FC layer, random init
      predictions = Dense(nb_classes, activation='softmax')(x) #new softmax layer
      model = Model(input=base_model.input, output=predictions)
      return model
    # 冻上NB_IV3_LAYERS之前的层
    def setup_to_finetune(model):
      """Freeze the bottom NB_IV3_LAYERS and retrain the remaining top layers.
    
      note: NB_IV3_LAYERS corresponds to the top 2 inception blocks in the inceptionv3 arch
    
      Args:
        model: keras model
      """
      for layer in model.layers[:NB_IV3_LAYERS_TO_FREEZE]:
         layer.trainable = False
      for layer in model.layers[NB_IV3_LAYERS_TO_FREEZE:]:
         layer.trainable = True
      model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy', metrics=['accuracy'])
    
    # 设置网络结构
    model = InceptionV3(weights='imagenet', include_top=False)
    model = add_new_last_layer(model, nb_classes)
    setup_to_finetune(model)
    
    # 模式二训练
    history_ft = model.fit_generator(
    train_generator,
    samples_per_epoch=nb_train_samples,
    nb_epoch=nb_epoch,
    validation_data=validation_generator,
    nb_val_samples=nb_val_samples,
    class_weight='auto1')
    
    # 模型保存
    model.save(output_model_file)
    model.save_weights(wights_path)
    # 画图
    def plot_training(history):
      acc = history.history['acc']
      val_acc = history.history['val_acc']
      loss = history.history['loss']
      val_loss = history.history['val_loss']
      epochs = range(len(acc))
      plt.plot(epochs, acc, 'r.')
      plt.plot(epochs, val_acc, 'r')
      plt.title('Training and validation accuracy')
      plt.figure()
      plt.plot(epochs, loss, 'r.')
      plt.plot(epochs, val_loss, 'r-')
      plt.title('Training and validation loss')
      plt.show()
    
    # 训练的acc_loss图
    plot_training(history_ft)

     2 . 服务器上测试图片

    # --coding:utf-8--
    # 定义层
    import sys
    import argparse
    import numpy as np
    from PIL import Image
    from io import BytesIO
    import matplotlib.pyplot as plt
    
    from keras.preprocessing import image
    from keras.models import load_model
    from keras.applications.inception_v3 import preprocess_input
    
    # 狂阶图片指定尺寸
    target_size = (299, 299) #fixed size for InceptionV3 architecture
    
    # 预测函数
    # 输入:model,图片,目标尺寸
    # 输出:预测predict
    def predict(model, img, target_size):
      """Run model prediction on image
      Args:
        model: keras model
        img: PIL format image
        target_size: (w,h) tuple
      Returns:
        list of predicted labels and their probabilities
      """
      if img.size != target_size:
        img = img.resize(target_size)
    
      x = image.img_to_array(img)
      x = np.expand_dims(x, axis=0)
      x = preprocess_input(x)
      preds = model.predict(x)
      return preds[0]
    
    # 画图函数
    # 预测之后画图,这里默认是猫狗,当然可以修改label
    
    labels = ("mosaic", "normal")
    def plot_preds(image, preds,labels):
      """Displays image and the top-n predicted probabilities in a bar graph
      Args:
        image: PIL image
        preds: list of predicted labels and their probabilities
      """
      plt.imshow(image)
      plt.axis('off')
      plt.figure()
      plt.barh([0, 1], preds, alpha=0.5)
      plt.yticks([0, 1], labels)
      plt.xlabel('Probability')
      plt.xlim(0,1.01)
      plt.tight_layout()
      plt.show()
    
    # 载入模型
    model = load_model('/home/dl/local_repo/data/mosaic1/mosaic.model')
    
    # 本地图片
    img = Image.open('test.jpg')
    preds = predict(model, img, target_size)
    print preds
    ##plot_preds(img, preds,labels)##因为没有显示器  所以不画图了

    3.   hdf5 转为 pb

    # -*- coding: utf-8 -*-
    from keras.models import load_model
    import tensorflow as tf
    import os 
    import os.path as osp
    from keras import backend as K
    #路径参数
    # input_path = 'input path'
    # weight_file = 'weight.h5'
    # weight_file_path = osp.join(input_path,weight_file)
    
    weight_file = 'mosaic.hdf5'
    weight_file_path = '/home/dl/local_repo/data/mosaic1/mosaic.hdf5'
    
    output_graph_name = weight_file[:-4] + '.pb'
    
    #转换函数
    def h5_to_pb(h5_model,output_dir,model_name,out_prefix = "output_",log_tensorboard = True):
        if osp.exists(output_dir) == False:
            os.mkdir(output_dir)
        out_nodes = []
        for i in range(len(h5_model.outputs)):
            out_nodes.append(out_prefix + str(i + 1))
            tf.identity(h5_model.output[i],out_prefix + str(i + 1))
        sess = K.get_session()
        from tensorflow.python.framework import graph_util,graph_io
        init_graph = sess.graph.as_graph_def()
        main_graph = graph_util.convert_variables_to_constants(sess,init_graph,out_nodes)
        graph_io.write_graph(main_graph,output_dir,name = model_name,as_text = False)
        if log_tensorboard:
            from tensorflow.python.tools import import_pb_to_tensorboard
            import_pb_to_tensorboard.import_to_tensorboard(osp.join(output_dir,model_name),output_dir)
    #输出路径
    output_dir = osp.join(os.getcwd(),"trans_model")
    #加载模型
    h5_model = load_model(weight_file_path)
    h5_to_pb(h5_model,output_dir = output_dir,model_name = output_graph_name)
    print('model saved')
     
     
     
     
     
    4.  Opencv  测试       参考 : opencv-4.0.1modulesdnn est est_tf_importer.cpp
    TEST(Test_TensorFlow, read_inception)
    {
        Net net;
        {
            const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
            net = readNetFromTensorflow(model);
            ASSERT_FALSE(net.empty());
        }
        net.setPreferableBackend(DNN_BACKEND_OPENCV);
    
        Mat sample = imread(_tf("grace_hopper_227.png"));
        ASSERT_TRUE(!sample.empty());
        Mat input;
        resize(sample, input, Size(299, 299));
        input -= 128; // mean sub
    
        Mat inputBlob = blobFromImage(input);
    
        net.setInput(inputBlob, "input");
        Mat out = net.forward("softmax2");
    
        std::cout << out.dims << std::endl;
    }
     
    错误及解决办法
    1.   readNetFromTensorflow   crash .

    这里是由于FusedBatchNorm 越界了  blobs的size是3   取不到blobs[3]

    2. 提示libnvinfer.so.5 找不到

    下载对应版本的 TensorRT         https://developer.nvidia.com/nvidia-tensorrt-5x-download

    tar ***.tar.gz

    cd TensorRT*/lib

    cp libnvinfer.so.5.0.2 /usr/lib/x86_64-linux-gnu/
    ln -s /usr/lib/x86_64-linux-gnu/libnvinfer.so.5.0.2 /usr/lib/x86_64-linux-gnu/libnvinfer.so.5

  • 相关阅读:
    Redis基本概念、基本使用与单机集群部署
    Storm安装部署
    HBase单机和集群版部署
    Hive基础概念、安装部署与基本使用
    Hadoop — HDFS的概念、原理及基本操作
    随机森林
    深度学习入门: CNN与LSTM(RNN)
    word修改页眉使本页的页眉与别的页不一样
    几个值得学习的Java博客
    【转】求最短路径长度--简单易懂
  • 原文地址:https://www.cnblogs.com/luoyinjie/p/10605753.html
Copyright © 2011-2022 走看看