zoukankan      html  css  js  c++  java
  • 概率论知识总结

    概率论第三部分:二(多)维随机变量的性质计算

    1.如何计算二维随机变量的联合分布函数?

    思路:首先分类讨论:离散型:对分布律进行求和——连续型:求出概率密度函数,正确定限,积分。其中,正确定限是连续型求解中极其容易犯错的地方

    例题:随机变量(x,y)服从d上的均匀分布,其中d为x轴、y轴及直线y=2x+1围成的三角形区域,求
    (1)随机变量(x,y)的密度函数(2)随机变量(x,y)的分布函数

    密度函数自然不用说,面积是1/4,所以密度函数一个是0,一个是4,(注意定义域:-1/2<=x<=0,0<=y<=2x+1)

    重点来了,如何求解(x,y)的分布函数?

    由定义可知:F(x,,y)=∫∫f(x,y)dxdy,(积分下限是-∞,上限分别是x和y)

    但是我们要注意,f(x,y)仅在定义域(-1/2<=x<=0,0<=y<=2x+1)内是非零的,所以我们需要画图进行分类讨论。

    1. 由F(x)的定义   小于x的概率   ,我们就可以知道,当x和y有任意一个小于定义域的左边界时,从-∞积分上来都会因为f(x,y)==0而为0。
    2. 当x,y都在定义域的范围内时,我们可以认为x,y都是变量,所以x和y的积分上限都是x和y(因为在这种情况下,x和y是分别独立被给定的,之间没有关系),我们可以调换积分顺序,先积分的变量要用另外一个变量来确定上下限,本题中,如果先x后y,则x是:(-1/2*(y-1))——x,y是:0——y,如果先y后x,则x是:(-1/2)——x,而y是:2x+1——y
    3. 当x在定义域范围,而y出了定义域范围时,我们知道,y如果小于定义域中y的下限,则已经在1中讨论过为0,因此这里需要再讨论y大于定义域上限的情况。此时,由于y超出了范围,因此y不再是2中的那种“变量”,此时只有x可以被“给定”,所以此时要先积y,再积x,不能调换顺序,因为此时的F(x,y)需要用可以被给定的变量来刻画,也就是x。因此,积分上下限为,x是:-1/2——x,y是:0——2x+1,还是2x+1——1?答案是0——2x+1。为什么呢,因为这还是和F的含义有关,当x在定义域内,而y超出定义域时,我们通过画图,可以看出,给定一个x后,y的积分实际上还是从-∞到达一个超过了定义域的值为止,所以可以在图形上表示如下:所以,实际影响结果的还是涂黑的那部分。
    4. 接下来,如果y在定义域内,而x超出了定义域,那么我们确定F(x,y)需要用y来表示,我们可以根据3中的思路,得到x和y的上下限:x为:(y-1)/2——0,y为:0——y

    5. 最后,如果x和y都超出了定义域,那么毫无疑问,F(x,y)==1

    这样,我们就可以保证无遗漏地讨论了所有的F(x,y),只要求出并写出,就可以了。

  • 相关阅读:
    网站如何做分布式(集群)的大纲
    [转]Bind和Eval的区别详解
    SQL 中游标的并发问题。
    如何利用客户端缓存对网站进行优化?
    Windows的第五种群集方案 CCS
    ICollection 接口的类序列化的问题。
    如何提高网页的效率(上篇)——提高网页效率的14条准则
    石油地质名称解释
    【SQL基础概念】
    DataView/DataRowView
  • 原文地址:https://www.cnblogs.com/luruiyuan/p/5588283.html
Copyright © 2011-2022 走看看