zoukankan      html  css  js  c++  java
  • Logistic混沌映射(转)

    Logistic混沌映射
    1 引言
    如果一个系统的演变过程对初始的状态十分敏感,就把这个系统称为是混沌系统。

    在1972年12月29日,美国麻省理工教授、混沌学开创人之一E.N.洛仑兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个龙卷风,并由此提出了天气的不可准确预报性。至此以后,人们对于混沌学研究的兴趣十分浓厚,今天,伴随着计算机等技术的飞速进步,混沌学已发展成为一门影响深远、发展迅速的前沿科学。

    混沌来自于非线性动力系统,而动力系统又描述的是任意随时间变化的过程,这个过程是确定性的、类似随机的、非周期的、具有收敛性的,并且对于初始值有极敏感的依赖性。而这些特性正符合序列密码的要求。1989年Robert Matthews在Logistic映射的变形基础上给出了用于加密的伪随机数序列生成函数,其后混沌密码学及混沌密码分析等便相继发展起来。混沌流密码系统的设计主要采用以下几种混沌映射:一维Logistic映射、二维He’non映射、三维Lorenz映射、逐段线性混沌映射、逐段非线性混沌映射等,在本文中,我们主要探讨一维Logistic映射的一些特性。

    2 Logistic映射分析
    一维Logistic映射从数学形式上来看是一个非常简单的混沌映射,早在20世纪50年代,有好几位生态学家就利用过这个简单的差分方程,来描述种群的变化。此系统具有极其复杂的动力学行为,在保密通信领域的应用十分广泛,其数学表达公式如下:

    Xn+1=Xn×μ×(1-Xn)         μ∈[0,4]     X∈[0,1]

           

    其中 μ∈[0,4]被称为Logistic参数。研究表明,当X∈[0,1] 时,Logistic映射工作处于混沌状态,也就是说,有初始条件X0在Logistic映射作用下产生的序列是非周期的、不收敛的,而在此范围之外,生成的序列必将收敛于某一个特定的值。如下图所示:

     

    可以看出,在μ的取值符合3.5699456<μ<=4的条件,特别是比较靠近4时,迭代生成的值是出于一种伪随机分布的状态,而在其他取值时,在经过一定次数的迭代之后,生成的值将收敛到一个特定的数值,这对于我们来说是不可接受的。

    下图中描述了X0值一定时,对于不同的μ的取值,迭代可能得到的值:


     

    图中的点即表明了所有可能的X取值范围。从图中我们可以看出,在μ越接近4的地方,X取值范围越是接近平均分布在整个0到1的区域,因此我们需要选取的Logistic控制参数应该越接近4越好。

    在μ的值确定之后,我们再来看看初始值X0对整个系统的影响。刚才也说过了,混沌系统在初始值发生很小变化时,得到的结构就会大相径庭,在Logistic混沌映射中也是如此。


    上图显示的是X0= 0.663489000和X0= 0.663489001,μ=3.99时两个Logistic序列之差的图像,很明显,在最开始20多次迭代,两者的差很小,近似等于0,但随着迭代次数的增加,两个序列的值显示出一种无规律的情形,两者相差也比较大了。因此可以看出该系统具有很好的雪崩效应。

    我们在使用Logistic混沌系统时,可以先让系统先迭代一定次数之后,再使用生成的值,这样可以更好地掩盖原始的情况,使雪崩效应扩大,这样可以具有更好的安全性。

    最后我们再来看看Logistic的随机分布特性,一个好的伪随机序列应该有比较平均的分布,也就是说,每个数出现的概率应该是相等的。我们对X0=0.2,μ=3.9999的Logistic混沌映射进行30000次迭代后对其值进行统计,分布情况如下表所示:

    分布区间
     个数
     所占百分比
     
    0 - 0.1
     5919
     19.73%
     
    0.1 - 0.2
     2685
     8.95%
     
    0.2 - 0.3
     2218
     7.39%
     
    0.3 - 0.4
     2140
     7.13%
     
    0.4 - 0.5
     1890
     6.30%
     
    0.5 - 0.6
     1973
     6.58%
     
    0.6 - 0.7
     1937
     6.46%
     
    0.7 - 0.8
     2310
     7.70%
     
    0.8 - 0.9
     2733
     9.11%
     
    0.9 - 1
     6195
     20.65%
     

    从上表中我们可以看出,Logistic映射的迭代序列的分布并不是均匀的,对于其他的X0取值也有类似的结构。而且从表中我们还可以看出,其分布是一种两头大中间小的情形。虽然分布情况并不是很平均,但是对于一般情形来说,Logistic映射序列是可以满足我们的需求的。而且我们可以对其想办法加以改进,使之可以获得更好的平均性。

    3 总结
    本文对Logistic混沌映射进行了一些粗浅的分析,分析了控制参数对其的影响、Logistic的雪崩效应、序列值的分布情况。在初值和控制参数都会改变的情况下,该系统还是具备很好的安全性的。目前已经有很多人提出基于Logistic的改进算法,很好地改进了平均性。Logistic算法在图像加密领域已经有不少论文出现,目前对其的研究也很成熟了,我们可以对其加以改进使之符合矢量数据加密的要求。

     

    本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/qiluofei/archive/2007/10/22/1837562.aspx

  • 相关阅读:
    mongodb数据类型
    Pycharm2020.1 破解教程
    酱茄主题(资讯/社区WordPress主题)正式发布
    WordPress社区商城小程序“酱茄pro小程序”V1.7.8发布
    SpringBoot 的@Value注解真是太强了,谁用谁说爽!
    python3_String复习
    Core Data的简单实用
    git submodule
    区间修改主席树
    快速数论变换ntt
  • 原文地址:https://www.cnblogs.com/luspa/p/1578637.html
Copyright © 2011-2022 走看看