zoukankan      html  css  js  c++  java
  • UFLDL教程之(三)PCA and Whitening exercise

    Exercise:PCA and Whitening

    第0步:数据准备

    UFLDL下载的文件中,包含数据集IMAGES_RAW,它是一个512*512*10的矩阵,也就是10幅512*512的图像

    (a)载入数据

    利用sampleIMAGESRAW函数,从IMAGES_RAW中提取numPatches个图像块儿,每个图像块儿大小为patchSize,并将提取到的图像块儿按列存放,分别存放在在矩阵patches的每一列中,即patches(:,i)存放的是第i个图像块儿的所有像素值

    (b)数据去均值化处理

    将每一个图像块儿的所有像素值都减去该图像块儿的平均像素值,实现数据的去均值化

     下图是显示的随机选取的图像块儿

    第一步:执行PCA

    该部分分为两部分

    (1)进行PCA计算,这里仅仅对数据x进行旋转得到xrot,而不进行主成分的提取

    具体地:

    ①计算数据x的协方差矩阵sigma

                 

    ②对sigma进行特征分解,利用matlab的eig函数,从而得到sigma的特征向量构成的矩阵U

    [U,S,V]=eig(sigma);

    U=[u1,...,ui,...,un],它的每一列分别是sigma的特征向量,n是输入数据的特征维数

    S=diag([λ1,...λi,...,λn])是由sigma的特征值作为对角元素的对角阵,ui和λi相对应;

    为了后续的计算,这里要将U的各列次序进行调换,使得调换后的各列所对应的特征值大小依次递减;

    调换后的矩阵仍记作U,相应的特征值对角阵仍即为S,即:

    U=[u1,...,ui,...,un],S=diag([λ1,...λi,...,λn]),满足:λ1>=...>=λi>=...>=λn

     ③利用矩阵U对数据x进行旋转,得到xrot,即xrot=U‘*x

    (2)对旋转后的数据求解协方差矩阵covar,并将其可视化,观察得到的选择后的数据是否正确

    PCA保证选择后的数据的协方差矩阵是一个对角阵,如果covar是正确的

    那么它的图像应该是一个蓝色背景,并且在对角线位置有一斜线

    这里显示协方差矩阵covar利用了matlab的imagesc,该函数真的很强大呀

    imagesc(covar)的作用是:把矩阵covar以图像形式显示出来,矩阵中不同的数值会被赋予不同的颜色

    得到的协方差矩阵的图像如下:可以看到,图像处了对角线位置外,其余部分颜色都相同

      

    第二步:满足条件的主成分个数

    本部分,找到满足条件的主成分的个数k

    也就是找到最小的k值,使得(λ1+...+ λk)/(λ1+...+ λn)>某个百分数,如99%

    第三步:利用找到的主成分个数,对数据进行降维

    在第二步,已经找到了数字k,也就是,保留数据的k个主成分就满足了要求

    在该步,将对数据x进行降维,只留下k个主成分,得到xTidle

    同时,为了观察降维后的数据的好坏,在利用U(:,k)将降维后的数据变换会原来的维数,也就是得到了原数据的近似恢复数据

    并利用网格将恢复出的图像显示出,与原图像进行比较,下面第一幅图是由降维后的图像恢复出的原数据,下图是相应的原数据,可以发现,降维后的数据基本可以恢复出于原数据非常相近的数据

    第四步:PCA白化+正则化

    该部分分为两步

    (1)执行具有白化和正则化的PCA

    首先,对数据进行旋转(利用特征矩阵U)

    然后,利用特征值对旋转后的数据进行缩放,实现白化

    同时,在利用特征值缩放时,利用参数ε对特征值进行微调,实现正则化

    (b)计算百化后的数据的协方差矩阵,观察该协方差矩阵

    如果加入了正则化项,则该协方差矩阵的对角线元素都小于1

    如果没有加入正则项(即仅有旋转+白化),则该协方差矩阵的对角线元素都为1(实际上,是令ε为一个极小的数)

    下图是白化后数据的协方差矩阵对应的图像,上图是加入正则化后的结果,下图是没有加入正则化后的结果

     

    第五步:ZCA白化

    ZCA白化,就是在PCA白化的基础上做了一个旋转,即

    下面的第一幅图是ZCA白化后的结果图,第二幅图是相应的原始图像

    可以看到,ZCA白化的结果图似乎是原始图像的边缘

    下面,是该部分的pca_gen的代码

    clc
    clear
    close all
    
    %%================================================================
    %% Step 0a: Load data
    %  Here we provide the code to load natural image data into x.
    %  x will be a 144 * 10000 matrix, where the kth column x(:, k) corresponds to
    %  the raw image data from the kth 12x12 image patch sampled.
    %  You do not need to change the code below.
    x = sampleIMAGESRAW();%从IMAGES_RAW中读取一些图像patches
    figure('name','Raw images');%显示一个figure,标题为raw images
    randsel = randi(size(x,2),200,1); % A random selection of samples for visualization
    display_network(x(:,randsel));%显示随机选取的图像块儿
    %% Step 0b: Zero-mean the data (by row)
    %  You can make use of the mean and repmat/bsxfun functions.
    % -------------------- YOUR CODE HERE -------------------- 
    x=x-repmat(mean(x),size(x,1),1);%x的每一列的所有元素都减去该列的均值
    
    
    %%================================================================
    %% Step 1a: Implement PCA to obtain xRot
    %  Implement PCA to obtain xRot, the matrix in which the data is expressed
    %  with respect to the eigenbasis of sigma, which is the matrix U.
    % -------------------- YOUR CODE HERE -------------------- 
    xRot = zeros(size(x)); % You need to compute this
    % 计算协方差矩阵并进行特征值分解
    m=size(x,1);%输入的样本个数
    sigma=x*x'/m;%输入数据的协方差矩阵
    [U,S,V]=eig(sigma);%对协方差矩阵进行特征值分解
    [S_Value,S_Index]=sort(diag(S),'descend');%提取S的对角线元素,将其按降序排列,sIndex是排序后的编号
    U=U(:,S_Index);
    S=diag(S_Value);
    % 对数据进行旋转
    xRot=U'*x;
    
    %% Step 1b: Check your implementation of PCA
    %  The covariance matrix for the data expressed with respect to the basis U
    %  should be a diagonal matrix with non-zero entries only along the main
    %  diagonal. We will verify this here.
    %  Write code to compute the covariance matrix, covar. 
    %  When visualised as an image, you should see a straight line across the
    %  diagonal (non-zero entries) against a blue background (zero entries).
    % -------------------- YOUR CODE HERE -------------------- 
    covar = zeros(size(x, 1)); % You need to compute this
    covar=xRot*xRot'/m;%旋转数据后的数据对应的协方差矩阵
    % Visualise the covariance matrix. You should see a line across the
    % diagonal against a blue background.
    figure('name','Visualisation of covariance matrix');
    imagesc(covar);
    
    %%================================================================
    %% Step 2: Find k, the number of components to retain
    %  Write code to determine k, the number of components to retain in order
    %  to retain at least 99% of the variance.
    % -------------------- YOUR CODE HERE -------------------- 
    k = 0; % Set k accordingly
    S_diag=diag(S);
    S_sum=sum(S_diag);
    for k=1:size(x,1)
        Sk_sum=sum(S_diag(1:k));
        if Sk_sum/S_sum>=0.99
            break;
        end
    end
    
    %%================================================================
    %% Step 3: Implement PCA with dimension reduction
    %  Now that you have found k, you can reduce the dimension of the data by
    %  discarding the remaining dimensions. In this way, you can represent the
    %  data in k dimensions instead of the original 144, which will save you
    %  computational time when running learning algorithms on the reduced
    %  representation.
    % 
    %  Following the dimension reduction, invert the PCA transformation to produce 
    %  the matrix xHat, the dimension-reduced data with respect to the original basis.
    %  Visualise the data and compare it to the raw data. You will observe that
    %  there is little loss due to throwing away the principal components that
    %  correspond to dimensions with low variation.
    
    % -------------------- YOUR CODE HERE -------------------- 
    % 对数据进行降维
    xTidle=U(:,1:k)'*x;
    % 利用降维后的数据xTidle对数据进行恢复
    xHat = zeros(size(x));  % You need to compute this
    xHat = U*[xTidle;zeros(m-k,size(x,2))];
    
    % Visualise the data, and compare it to the raw data
    % You should observe that the raw and processed data are of comparable quality.
    % For comparison, you may wish to generate a PCA reduced image which
    % retains only 90% of the variance.
    
    figure('name',['PCA processed images ',sprintf('(%d / %d dimensions)', k, size(x, 1)),'']);
    display_network(xHat(:,randsel));
    figure('name','Raw images');
    display_network(x(:,randsel));
    
    %%================================================================
    %% Step 4a: Implement PCA with whitening and regularisation
    %  Implement PCA with whitening and regularisation to produce the matrix
    %  xPCAWhite. 
    epsilon =0.000001;
    % -------------------- YOUR CODE HERE -------------------- 
    xPCAWhite = zeros(size(x));
    xPCAWhite=diag(1./sqrt(S_diag+epsilon))*xRot;
    %% Step 4b: Check your implementation of PCA whitening 
    %  Check your implementation of PCA whitening with and without regularisation. 
    %  PCA whitening without regularisation results a covariance matrix 
    %  that is equal to the identity matrix. PCA whitening with regularisation
    %  results in a covariance matrix with diagonal entries starting close to 
    %  1 and gradually becoming smaller. We will verify these properties here.
    %  Write code to compute the covariance matrix, covar. 
    %
    %  Without regularisation (set epsilon to 0 or close to 0), 
    %  when visualised as an image, you should see a red line across the
    %  diagonal (one entries) against a blue background (zero entries).
    %  With regularisation, you should see a red line that slowly turns
    %  blue across the diagonal, corresponding to the one entries slowly
    %  becoming smaller.
    % -------------------- YOUR CODE HERE -------------------- 
    covar=xPCAWhite*xPCAWhite'/m;
    % Visualise the covariance matrix. You should see a red line across the
    % diagonal against a blue background.
    figure('name','Visualisation of covariance matrix');
    imagesc(covar);
    
    %%================================================================
    %% Step 5: Implement ZCA whitening
    %  Now implement ZCA whitening to produce the matrix xZCAWhite. 
    %  Visualise the data and compare it to the raw data. You should observe
    %  that whitening results in, among other things, enhanced edges.
    xZCAWhite = zeros(size(x));
    % -------------------- YOUR CODE HERE -------------------- 
    xZCAWhite=U*xPCAWhite;%ZCA白化即在PCA白化基础上做了一个旋转
    % Visualise the data, and compare it to the raw data.
    % You should observe that the whitened images have enhanced edges.
    figure('name','ZCA whitened images');
    display_network(xZCAWhite(:,randsel));
    figure('name','Raw images');
    display_network(x(:,randsel));
    

      

    ------------------------------------------------------------------------------------------------------------------------------- 博主为菜鸟一枚,发表博客的主要目的是为了记录科研中的点滴,方便自己以后查阅,如果有错误的地方,还请大家多提宝贵意见,如果有何侵犯到其他博主的内容,还请告知博主,将会及时处理! 另外,对于未标注转载的文章,均为博主自己整理,如需转载,请注明出处,谢谢!
  • 相关阅读:
    安装devstack之配置proxy
    设备信息表项目
    好的运维工程师
    rhel 6.4 增加光盘为yum repo
    深度运维产品工具关键词
    坚持是一种能力
    书单 电影单 电视剧单
    三日不读书,便觉得言语无味,面目可憎
    STAR法则
    【断舍离】
  • 原文地址:https://www.cnblogs.com/lutingting/p/4762831.html
Copyright © 2011-2022 走看看