zoukankan      html  css  js  c++  java
  • python--如何给dict字典类型排序

    python中的字典底层是树实现的,本身没有像列表一样可以排序,但是会有应用场景需要将字典排序

    1、一个字典按照值排序
    example:
    d = {'lilee':25, 'wangyan':21, 'liqun':32, 'age':19}
    
    print(sorted(d.items(), key=lambda item:item[1]))
    
    # response:
    # [('age', 19), ('wangyan', 21), ('lilee', 25), ('liqun', 32)]

    2、列表嵌套字典,列表里存在多个字典,需要按照某一个键值对排序

    response = [
        {'pId': '/opt/data/', 'id': '/opt/data/1.txt', 'name': '1.txt'},
        {'pId': '/opt/data/2020-04', 'id': '/opt/data/2020-04/data-2020-04-01-1.log.gz', 'name': '2020-04/data-2020-04-01-1.log.gz'},
        {'pId': '/opt/data/2020-04', 'id': '/opt/data/2020-04/data-2020-04-02-1.log.gz', 'name': '2020-04/data-2020-04-02-1.log.gz'},
        {'pId': '/opt/data/2020-04', 'id': '/opt/data/2020-04/data-2020-04-04-1.log.gz', 'name': '2020-04/data-2020-04-04-1.log.gz'},
        {'pId': '/opt/data/2020-04', 'id': '/opt/data/2020-04/data-2020-04-03-1.log.gz', 'name': '2020-04/data-2020-04-03-1.log.gz'},
        {'name': '2020-04', 'pId': '/opt/data/2020-04', 'id': '/opt/data/2020-04'},
        {'pId': '/opt/data/', 'id': '/opt/data/data.log', 'name': 'data.log'},
    ]
    
    response.sort(key=lambda x: x['id'])
    
    print(response)
    
    # [{'pId': '/opt/data/', 'id': '/opt/data/1.txt', 'name': '1.txt'}, {'name': '2020-04', 'pId': '/opt/data/2020-04', 'id': '/opt/data/2020-04'}, {'pId': '/opt/data/2020-04', 'id': '/opt/data/2020-04/data-2020-04-01-1.log.gz', 'name': '2020-04/data-2020-04-01-1.log.gz'}, {'pId': '/opt/data/2020-04', 'id': '/opt/data/2020-04/data-2020-04-02-1.log.gz', 'name': '2020-04/data-2020-04-02-1.log.gz'}, {'pId': '/opt/data/2020-04', 'id': '/opt/data/2020-04/data-2020-04-03-1.log.gz', 'name': '2020-04/data-2020-04-03-1.log.gz'}, {'pId': '/opt/data/2020-04', 'id': '/opt/data/2020-04/data-2020-04-04-1.log.gz', 'name': '2020-04/data-2020-04-04-1.log.gz'}, {'pId': '/opt/data/', 'id': '/opt/data/data.log', 'name': 'data.log'}]
    当然这都是正序排列,reverse=True反转参数
  • 相关阅读:
    AI芯片:高性能卷积计算中的数据复用
    矩阵乘法加速器的设计框架
    NVDLA中Winograd卷积的设计
    神经网络加速器应用实例:图像分类
    Simple TPU的设计和性能评估
    TPU中的指令并行和数据并行
    TPU中的脉动阵列及其实现
    动手写一个简单版的谷歌TPU
    利用Xilinx HLS实现LDPC译码器
    FPGA上如何求32个输入的最大值和次大值:分治
  • 原文地址:https://www.cnblogs.com/lutt/p/12723267.html
Copyright © 2011-2022 走看看