zoukankan      html  css  js  c++  java
  • PostgreSQL 使用 PreparedStatement 导致查询慢的分析

    实验环境:

    DB is PostgreSQL version 8.2.15 

    JDK1.8

    测试一

    使用JDBC查询一个SQL:

    public static void test1(String url, Properties props){
            String sql = "SELECT l.src_ip, l.location_id, "
                    + "SUM(l.us_bytes) as up_usage, "
                    + "SUM(l.ds_bytes) as down_usage, "
                    + "(SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage "
                    + "FROM unmapped_endpoint_location_hours l "
                    + "where l.org_id = 195078 "
                    + "AND date_time >= '2017-04-01 00:00:00.0' AND date_time < '2017-04-08 00:00:00.0' "
                    + "AND l.location_id in (2638,2640,2654 ) "
                    + "GROUP BY l.src_ip, l.location_id ";
            
            Connection conn = null;
            Statement sta = null;
            try {
                System.out.println("Start query1:" );
                long s_time = System.currentTimeMillis();
                conn = DriverManager.getConnection(url, props);
                sta = conn.createStatement();
                sta.execute(sql);
                System.out.println("Using Time: " + (System.currentTimeMillis() - s_time));
            } catch (SQLException e) {
                e.printStackTrace();
            } finally {
                if (conn != null) {
                    try {
                        conn.close();
                    } catch (SQLException e) {
                        e.printStackTrace();
                    }
                }
                if (sta != null) {
                    try {
                        sta.close();
                    } catch (SQLException e) {
                        e.printStackTrace();
                    }
                }
            }
        }

    结果:

    Start query1:
    Using Time: 11519 ms

    测试二

    使用JDBC PreparedStatement 查询相同的SQL:

    public static void test2(String url, Properties props){
            String sql2 = "SELECT l.src_ip, l.location_id, "
                    + "SUM(l.us_bytes) as up_usage, "
                    + "SUM(l.ds_bytes) as down_usage, "
                    + "(SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage "
                    + "FROM unmapped_endpoint_location_hours l "
                    + "where l.org_id = ? "
                    + "AND date_time >= ? AND date_time < ? "
                    + "AND l.location_id in (2638,2640,2654 ) "
                    + "GROUP BY l.src_ip, l.location_id";
            
            Connection conn = null;
            PreparedStatement preSta = null;
            try {
                System.out.println("Start query2:");
                long s_time = System.currentTimeMillis();
                conn = DriverManager.getConnection(url, props);
                preSta = conn.prepareStatement(sql2);
                preSta.setString(1, "195078");
                preSta.setString(2, "2017-04-01 00:00:00.0");
                preSta.setString(3, "2017-04-09 00:00:00.0");
                preSta.executeQuery();
                System.out.println("Using Time: " + (System.currentTimeMillis() - s_time));
            } catch (SQLException e) {
                e.printStackTrace();
            } finally {
                if (conn != null) {
                    try {
                        conn.close();
                    } catch (SQLException e) {
                        e.printStackTrace();
                    }
                }
                if (preSta != null) {
                    try {
                        preSta.close();
                    } catch (SQLException e) {
                        e.printStackTrace();
                    }
                }
            }
        }

    结果:

    Start query2:
    Using Time: 143031 ms

    相同的SQL,测试二和测试一结果为什么差别这么大?

    测试一的SQL没有使用PreparedStatement 方式,直接给了原始的SQL。测试二的使用了PreparedStatement ,但是在set参数的时候用的都是String。

    两者查询速度相差10倍,这是不是很奇怪?

    现在来做另一个实验:

    测试三

    使用JDBC PreparedStatement 查询相同的SQL:

    public static void test3(String url, Properties props){
            String sql2 = "SELECT l.src_ip, l.location_id, "
                    + "SUM(l.us_bytes) as up_usage, "
                    + "SUM(l.ds_bytes) as down_usage, "
                    + "(SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage "
                    + "FROM unmapped_endpoint_location_hours l "
                    + "where l.org_id = ? "
                    + "AND date_time >= ? AND date_time < ? "
                    + "AND l.location_id in (2638,2640,2654 ) "
                    + "GROUP BY l.src_ip, l.location_id";
            
            Connection conn = null;
            PreparedStatement preSta = null;
            try {
                System.out.println("Start query3:");
                long s_time = System.currentTimeMillis();
                conn = DriverManager.getConnection(url, props);
                preSta = conn.prepareStatement(sql2);
                
                int org_id = 195078;
                SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
                TimeZone.setDefault(TimeZone.getTimeZone("UTC"));
                Date d1 = null;
                Date d2 = null;
                try {
                    d1 = df.parse("2017-04-01 00:00:00");
                    d2 = df.parse("2017-04-09 00:00:00");
                } catch (ParseException e1) {
                    e1.printStackTrace();
                }
                preSta.setInt(1, org_id);
                preSta.setTimestamp(2, new java.sql.Timestamp(d1.getTime()));
                preSta.setTimestamp(3, new java.sql.Timestamp(d2.getTime()));
                preSta.executeQuery();
                System.out.println("Using Time: " + (System.currentTimeMillis() - s_time));
            } catch (SQLException e) {
                e.printStackTrace();
            } finally {
                if (conn != null) {
                    try {
                        conn.close();
                    } catch (SQLException e) {
                        e.printStackTrace();
                    }
                }
                if (preSta != null) {
                    try {
                        preSta.close();
                    } catch (SQLException e) {
                        e.printStackTrace();
                    }
                }
            }
        }

    结果:

    Start query3:
    Using Time: 16245 ms

    测试结果和测试一的结果差不多,为什么?

    这次测试同样使用了PreparedStatement,但是在设置参数的时候指定了参数的类型。

    explan analyze

    查看explan

    dev=# explain analyze SELECT count(loc.name) AS totalNum
    dev-# FROM (SELECT t.src_ip, t.location_id, t.up_usage, t.down_usage, t.total_usage
    dev(#       FROM (SELECT l.src_ip, l.location_id,
    dev(#                   SUM(l.us_bytes) as up_usage,
    dev(#                   SUM(l.ds_bytes) as down_usage,
    dev(#                   (SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage
    dev(#             FROM unmapped_endpoint_location_hours l
    dev(#             where l.org_id = 195078
    dev(#                   AND date_time >= '2017-04-11 00:00:00.0' AND date_time < '2017-04-20 00:00:00.0'
    dev(#                   AND l.location_id in (2638,2640)
    dev(#                   GROUP BY l.src_ip, l.location_id ) t
    dev(# WHERE t.total_usage > 0.0 ) m
    dev-# LEFT OUTER JOIN locations loc on m.location_id = loc.id WHERE loc.org_id = 195078;

    Time: 15202.518 ms

    Prepare Expalin:
    
    PREPARE  test(int,text,text,int) as
    SELECT count(loc.name) AS totalNum
    FROM (SELECT t.src_ip, t.location_id, t.up_usage, t.down_usage, t.total_usage
          FROM (SELECT l.src_ip, l.location_id,
                      SUM(l.us_bytes) as up_usage,
                      SUM(l.ds_bytes) as down_usage,
                      (SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage
                FROM unmapped_endpoint_location_hours l
                where l.org_id = $1
                      AND date_time >= $2 AND date_time < $3
                      AND l.location_id in (2638,2640)
                      GROUP BY l.src_ip, l.location_id ) t
    WHERE t.total_usage > 0.0 ) m
    LEFT OUTER JOIN locations loc on m.location_id = loc.id WHERE loc.org_id = $4;
    
    Explain analyze EXECUTE test(195078,'2017-04-11 00:00:00.0','2017-04-20 00:00:00.0',195078);
    dev=# EXECUTE test(195078,'2017-04-11 00:00:00.0','2017-04-20 00:00:00.0',195078);

    Time: 98794.544 ms

    结论

    PostgreSQL 在使用原始SQL的时候会用表中类型来查,能有效根据where条件过滤结果。

    当参数都是使用String的时候,没有指定类型时,PostgreSQL没有先做类型转换,而是扫描了所有的数据,对所有的数据根据where条件过滤结果。

    当查询参数指定类型的时候,PostgreSQL可以先根据where条件过滤结果。

    相关连接:

    It seems when using JDBC with prepare statement, the query will be slow in postgresql:

    http://www.postgresql-archive.org/Slow-statement-when-using-JDBC-td3368379.html

    http://grokbase.com/t/postgresql/pgsql-general/116t4ewawk/reusing-cached-prepared-statement-slow-after-5-executions

    https://stackoverflow.com/questions/28236827/preparedstatement-very-slow-but-manual-query-quick

  • 相关阅读:
    Netty实例
    八大排序算法Java实现
    在linux服务器上初步定位java接口耗时
    Manjaro 18.X 配置记录
    Linux下搭建ELK和初步使用
    ubuntu下docker简单安装rabbitmq
    Linux禁启用ping的方法
    ubuntu下docker简单安装mysql
    Ubuntu18优化桌面版的运行速度
    ubuntu下webpack初始化vue项目
  • 原文地址:https://www.cnblogs.com/luxiaoxun/p/7131975.html
Copyright © 2011-2022 走看看