zoukankan      html  css  js  c++  java
  • Python 3深度置信网络(DBN)在Tensorflow中的实现MNIST手写数字识别

    Deep Learning with TensorFlow IBM Cognitive Class ML0120EN Module 5 - Autoencoders

    使用DBN识别手写体 传统的多层感知机或者神经网络的一个问题: 反向传播可能总是导致局部最小值。 当误差表面(error surface)包含了多个凹槽,当你做梯度下降时,你找到的并不是最深的凹槽。 下面你将会看到DBN是怎么解决这个问题的。

    深度置信网络

    深度置信网络可以通过额外的预训练规程解决局部最小值的问题。 预训练在反向传播之前做完,这样可以使错误率离最优的解不是那么远,也就是我们在最优解的附近。再通过反向传播慢慢地降低错误率。 深度置信网络主要分成两部分。第一部分是多层玻尔兹曼感知机,用于预训练我们的网络。第二部分是前馈反向传播网络,这可以使RBM堆叠的网络更加精细化。

    1. 加载必要的深度置信网络库

    # urllib is used to download the utils file from deeplearning.net
    import urllib.request
    response = urllib.request.urlopen('http://deeplearning.net/tutorial/code/utils.py')
    content = response.read().decode('utf-8')
    target = open('utils.py', 'w')
    target.write(content)
    target.close()
    # Import the math function for calculations
    import math
    # Tensorflow library. Used to implement machine learning models
    import tensorflow as tf
    # Numpy contains helpful functions for efficient mathematical calculations
    import numpy as np
    # Image library for image manipulation
    from PIL import Image
    # import Image
    # Utils file
    from utils import tile_raster_images

    2. 构建RBM层

    RBM的细节参考【https://blog.csdn.net/sinat_28371057/article/details/115795086

    ​ 为了在Tensorflow中应用DBN, 下面创建一个RBM的类

    class RBM(object):
        def __init__(self, input_size, output_size):
            # Defining the hyperparameters
            self._input_size = input_size  # Size of input
            self._output_size = output_size  # Size of output
            self.epochs = 5  # Amount of training iterations
            self.learning_rate = 1.0  # The step used in gradient descent
            self.batchsize = 100  # The size of how much data will be used for training per sub iteration
    
            # Initializing weights and biases as matrices full of zeroes
            self.w = np.zeros([input_size, output_size], np.float32)  # Creates and initializes the weights with 0
            self.hb = np.zeros([output_size], np.float32)  # Creates and initializes the hidden biases with 0
            self.vb = np.zeros([input_size], np.float32)  # Creates and initializes the visible biases with 0
    
        # Fits the result from the weighted visible layer plus the bias into a sigmoid curve
        def prob_h_given_v(self, visible, w, hb):
            # Sigmoid
            return tf.nn.sigmoid(tf.matmul(visible, w) + hb)
    
        # Fits the result from the weighted hidden layer plus the bias into a sigmoid curve
        def prob_v_given_h(self, hidden, w, vb):
            return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)
    
        # Generate the sample probability
        def sample_prob(self, probs):
            return tf.nn.relu(tf.sign(probs - tf.random_uniform(tf.shape(probs))))
    
        # Training method for the model
        def train(self, X):
            # Create the placeholders for our parameters
            _w = tf.placeholder("float", [self._input_size, self._output_size])
            _hb = tf.placeholder("float", [self._output_size])
            _vb = tf.placeholder("float", [self._input_size])
    
            prv_w = np.zeros([self._input_size, self._output_size],
                             np.float32)  # Creates and initializes the weights with 0
            prv_hb = np.zeros([self._output_size], np.float32)  # Creates and initializes the hidden biases with 0
            prv_vb = np.zeros([self._input_size], np.float32)  # Creates and initializes the visible biases with 0
    
            cur_w = np.zeros([self._input_size, self._output_size], np.float32)
            cur_hb = np.zeros([self._output_size], np.float32)
            cur_vb = np.zeros([self._input_size], np.float32)
            v0 = tf.placeholder("float", [None, self._input_size])
    
            # Initialize with sample probabilities
            h0 = self.sample_prob(self.prob_h_given_v(v0, _w, _hb))
            v1 = self.sample_prob(self.prob_v_given_h(h0, _w, _vb))
            h1 = self.prob_h_given_v(v1, _w, _hb)
    
            # Create the Gradients
            positive_grad = tf.matmul(tf.transpose(v0), h0)
            negative_grad = tf.matmul(tf.transpose(v1), h1)
    
            # Update learning rates for the layers
            update_w = _w + self.learning_rate * (positive_grad - negative_grad) / tf.to_float(tf.shape(v0)[0])
            update_vb = _vb + self.learning_rate * tf.reduce_mean(v0 - v1, 0)
            update_hb = _hb + self.learning_rate * tf.reduce_mean(h0 - h1, 0)
    
            # Find the error rate
            err = tf.reduce_mean(tf.square(v0 - v1))
    
            # Training loop
            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                # For each epoch
                for epoch in range(self.epochs):
                    # For each step/batch
                    for start, end in zip(range(0, len(X), self.batchsize), range(self.batchsize, len(X), self.batchsize)):
                        batch = X[start:end]
                        # Update the rates
                        cur_w = sess.run(update_w, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                        cur_hb = sess.run(update_hb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                        cur_vb = sess.run(update_vb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                        prv_w = cur_w
                        prv_hb = cur_hb
                        prv_vb = cur_vb
                    error = sess.run(err, feed_dict={v0: X, _w: cur_w, _vb: cur_vb, _hb: cur_hb})
                    print('Epoch: %d' % epoch, 'reconstruction error: %f' % error)
                self.w = prv_w
                self.hb = prv_hb
                self.vb = prv_vb
    
        # Create expected output for our DBN
        def rbm_outpt(self, X):
            input_X = tf.constant(X)
            _w = tf.constant(self.w)
            _hb = tf.constant(self.hb)
            out = tf.nn.sigmoid(tf.matmul(input_X, _w) + _hb)
            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                return sess.run(out)

    3. 导入MNIST数据

    使用one-hot encoding标注的形式载入MNIST图像数据。

    # Getting the MNIST data provided by Tensorflow
    from tensorflow.examples.tutorials.mnist import input_data
    
    # Loading in the mnist data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images,
        mnist.test.labels
    Extracting MNIST_data/train-images-idx3-ubyte.gz
    Extracting MNIST_data/train-labels-idx1-ubyte.gz
    Extracting MNIST_data/t10k-images-idx3-ubyte.gz
    Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

    4. 建立DBN

    RBM_hidden_sizes = [500, 200 , 50 ] #create 4 layers of RBM with size 785-500-200-50
    
    #Since we are training, set input as training data
    inpX = trX
    
    #Create list to hold our RBMs
    rbm_list = []
    
    #Size of inputs is the number of inputs in the training set
    input_size = inpX.shape[1]
    
    #For each RBM we want to generate
    for i, size in enumerate(RBM_hidden_sizes):
        print('RBM: ',i,' ',input_size,'->', size)
        rbm_list.append(RBM(input_size, size))
        input_size = size
    Extracting MNIST_data/train-images-idx3-ubyte.gz
    Extracting MNIST_data/train-labels-idx1-ubyte.gz
    Extracting MNIST_data/t10k-images-idx3-ubyte.gz
    Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
    RBM:  0   784 -> 500
    RBM:  1   500 -> 200
    RBM:  2   200 -> 50

    rbm的类创建好了和数据都已经载入,可以创建DBN。 在这个例子中,我们使用了3个RBM,一个的隐藏层单元个数为500, 第二个RBM的隐藏层个数为200,最后一个为50. 我们想要生成训练数据的深层次表示形式。

    5.训练RBM

    我们将使用***rbm.train()***开始预训练步骤, 单独训练堆中的每一个RBM,并将当前RBM的输出作为下一个RBM的输入。

    #For each RBM in our list
    for rbm in rbm_list:
        print('New RBM:')
        #Train a new one
        rbm.train(inpX) 
        #Return the output layer
        inpX = rbm.rbm_outpt(inpX)
    New RBM:
    Epoch: 0 reconstruction error: 0.061174
    Epoch: 1 reconstruction error: 0.052962
    Epoch: 2 reconstruction error: 0.049679
    Epoch: 3 reconstruction error: 0.047683
    Epoch: 4 reconstruction error: 0.045691
    New RBM:
    Epoch: 0 reconstruction error: 0.035260
    Epoch: 1 reconstruction error: 0.030811
    Epoch: 2 reconstruction error: 0.028873
    Epoch: 3 reconstruction error: 0.027428
    Epoch: 4 reconstruction error: 0.026980
    New RBM:
    Epoch: 0 reconstruction error: 0.059593
    Epoch: 1 reconstruction error: 0.056837
    Epoch: 2 reconstruction error: 0.055571
    Epoch: 3 reconstruction error: 0.053817
    Epoch: 4 reconstruction error: 0.054142

    现在我们可以将输入数据的学习好的表示转换为有监督的预测,比如一个线性分类器。特别地,我们使用这个浅层神经网络的最后一层的输出对数字分类。

    6. 神经网络

    下面的类使用了上面预训练好的RBMs实现神经网络。

    import numpy as np
    import math
    import tensorflow as tf
    
    
    class NN(object):
    
        def __init__(self, sizes, X, Y):
            # Initialize hyperparameters
            self._sizes = sizes
            self._X = X
            self._Y = Y
            self.w_list = []
            self.b_list = []
            self._learning_rate = 1.0
            self._momentum = 0.0
            self._epoches = 10
            self._batchsize = 100
            input_size = X.shape[1]
    
            # initialization loop
            for size in self._sizes + [Y.shape[1]]:
                # Define upper limit for the uniform distribution range
                max_range = 4 * math.sqrt(6. / (input_size + size))
    
                # Initialize weights through a random uniform distribution
                self.w_list.append(
                    np.random.uniform(-max_range, max_range, [input_size, size]).astype(np.float32))
    
                # Initialize bias as zeroes
                self.b_list.append(np.zeros([size], np.float32))
                input_size = size
    
        # load data from rbm
        def load_from_rbms(self, dbn_sizes, rbm_list):
            # Check if expected sizes are correct
            assert len(dbn_sizes) == len(self._sizes)
    
            for i in range(len(self._sizes)):
                # Check if for each RBN the expected sizes are correct
                assert dbn_sizes[i] == self._sizes[i]
    
            # If everything is correct, bring over the weights and biases
            for i in range(len(self._sizes)):
                self.w_list[i] = rbm_list[i].w
                self.b_list[i] = rbm_list[i].hb
    
        # Training method
        def train(self):
            # Create placeholders for input, weights, biases, output
            _a = [None] * (len(self._sizes) + 2)
            _w = [None] * (len(self._sizes) + 1)
            _b = [None] * (len(self._sizes) + 1)
            _a[0] = tf.placeholder("float", [None, self._X.shape[1]])
            y = tf.placeholder("float", [None, self._Y.shape[1]])
    
            # Define variables and activation functoin
            for i in range(len(self._sizes) + 1):
                _w[i] = tf.Variable(self.w_list[i])
                _b[i] = tf.Variable(self.b_list[i])
            for i in range(1, len(self._sizes) + 2):
                _a[i] = tf.nn.sigmoid(tf.matmul(_a[i - 1], _w[i - 1]) + _b[i - 1])
    
            # Define the cost function
            cost = tf.reduce_mean(tf.square(_a[-1] - y))
    
            # Define the training operation (Momentum Optimizer minimizing the Cost function)
            train_op = tf.train.MomentumOptimizer(
                self._learning_rate, self._momentum).minimize(cost)
    
            # Prediction operation
            predict_op = tf.argmax(_a[-1], 1)
    
            # Training Loop
            with tf.Session() as sess:
                # Initialize Variables
                sess.run(tf.global_variables_initializer())
    
                # For each epoch
                for i in range(self._epoches):
    
                    # For each step
                    for start, end in zip(
                            range(0, len(self._X), self._batchsize), range(self._batchsize, len(self._X), self._batchsize)):
                        # Run the training operation on the input data
                        sess.run(train_op, feed_dict={
                            _a[0]: self._X[start:end], y: self._Y[start:end]})
    
                    for j in range(len(self._sizes) + 1):
                        # Retrieve weights and biases
                        self.w_list[j] = sess.run(_w[j])
                        self.b_list[j] = sess.run(_b[j])
    
                    print("Accuracy rating for epoch " + str(i) + ": " + str(np.mean(np.argmax(self._Y, axis=1) == 
                                                                                     sess.run(predict_op, feed_dict={_a[0]: self._X, y: self._Y}))))

    7. 运行

    nNet = NN(RBM_hidden_sizes, trX, trY)
    nNet.load_from_rbms(RBM_hidden_sizes,rbm_list)
    nNet.train()
    Accuracy rating for epoch 0: 0.46683636363636366
    Accuracy rating for epoch 1: 0.6561272727272728
    Accuracy rating for epoch 2: 0.7678363636363637
    Accuracy rating for epoch 3: 0.8370727272727273
    Accuracy rating for epoch 4: 0.8684181818181819
    Accuracy rating for epoch 5: 0.885
    Accuracy rating for epoch 6: 0.8947636363636363
    Accuracy rating for epoch 7: 0.9024909090909091
    Accuracy rating for epoch 8: 0.9080363636363636
    Accuracy rating for epoch 9: 0.9124181818181818

    完整代码

    pip install tensorflow==1.13.1

    # Import the math function for calculations
    import math
    # Tensorflow library. Used to implement machine learning models
    import tensorflow as tf
    # Numpy contains helpful functions for efficient mathematical calculations
    import numpy as np
    # Image library for image manipulation
    # import Image
    # Utils file
    # Getting the MNIST data provided by Tensorflow
    from tensorflow.examples.tutorials.mnist import input_data
    
    """ This file contains different utility functions that are not connected
    in anyway to the networks presented in the tutorials, but rather help in
    processing the outputs into a more understandable way.
    
    For example ``tile_raster_images`` helps in generating a easy to grasp
    image from a set of samples or weights.
    """
    
    import numpy
    
    
    def scale_to_unit_interval(ndar, eps=1e-8):
        """ Scales all values in the ndarray ndar to be between 0 and 1 """
        ndar = ndar.copy()
        ndar -= ndar.min()
        ndar *= 1.0 / (ndar.max() + eps)
        return ndar
    
    
    def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0),
                           scale_rows_to_unit_interval=True,
                           output_pixel_vals=True):
        """
        Transform an array with one flattened image per row, into an array in
        which images are reshaped and layed out like tiles on a floor.
    
        This function is useful for visualizing datasets whose rows are images,
        and also columns of matrices for transforming those rows
        (such as the first layer of a neural net).
    
        :type X: a 2-D ndarray or a tuple of 4 channels, elements of which can
        be 2-D ndarrays or None;
        :param X: a 2-D array in which every row is a flattened image.
    
        :type img_shape: tuple; (height, width)
        :param img_shape: the original shape of each image
    
        :type tile_shape: tuple; (rows, cols)
        :param tile_shape: the number of images to tile (rows, cols)
    
        :param output_pixel_vals: if output should be pixel values (i.e. int8
        values) or floats
    
        :param scale_rows_to_unit_interval: if the values need to be scaled before
        being plotted to [0,1] or not
    
    
        :returns: array suitable for viewing as an image.
        (See:`Image.fromarray`.)
        :rtype: a 2-d array with same dtype as X.
    
        """
    
        assert len(img_shape) == 2
        assert len(tile_shape) == 2
        assert len(tile_spacing) == 2
    
        # The expression below can be re-written in a more C style as
        # follows :
        #
        # out_shape    = [0,0]
        # out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] -
        #                tile_spacing[0]
        # out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] -
        #                tile_spacing[1]
        out_shape = [
            (ishp + tsp) * tshp - tsp
            for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing)
        ]
    
        if isinstance(X, tuple):
            assert len(X) == 4
            # Create an output numpy ndarray to store the image
            if output_pixel_vals:
                out_array = numpy.zeros((out_shape[0], out_shape[1], 4),
                                        dtype='uint8')
            else:
                out_array = numpy.zeros((out_shape[0], out_shape[1], 4),
                                        dtype=X.dtype)
    
            #colors default to 0, alpha defaults to 1 (opaque)
            if output_pixel_vals:
                channel_defaults = [0, 0, 0, 255]
            else:
                channel_defaults = [0., 0., 0., 1.]
    
            for i in range(4):
                if X[i] is None:
                    # if channel is None, fill it with zeros of the correct
                    # dtype
                    dt = out_array.dtype
                    if output_pixel_vals:
                        dt = 'uint8'
                    out_array[:, :, i] = numpy.zeros(
                        out_shape,
                        dtype=dt
                    ) + channel_defaults[i]
                else:
                    # use a recurrent call to compute the channel and store it
                    # in the output
                    out_array[:, :, i] = tile_raster_images(
                        X[i], img_shape, tile_shape, tile_spacing,
                        scale_rows_to_unit_interval, output_pixel_vals)
            return out_array
    
        else:
            # if we are dealing with only one channel
            H, W = img_shape
            Hs, Ws = tile_spacing
    
            # generate a matrix to store the output
            dt = X.dtype
            if output_pixel_vals:
                dt = 'uint8'
            out_array = numpy.zeros(out_shape, dtype=dt)
    
            for tile_row in range(tile_shape[0]):
                for tile_col in range(tile_shape[1]):
                    if tile_row * tile_shape[1] + tile_col < X.shape[0]:
                        this_x = X[tile_row * tile_shape[1] + tile_col]
                        if scale_rows_to_unit_interval:
                            # if we should scale values to be between 0 and 1
                            # do this by calling the `scale_to_unit_interval`
                            # function
                            this_img = scale_to_unit_interval(
                                this_x.reshape(img_shape))
                        else:
                            this_img = this_x.reshape(img_shape)
                        # add the slice to the corresponding position in the
                        # output array
                        c = 1
                        if output_pixel_vals:
                            c = 255
                        out_array[
                            tile_row * (H + Hs): tile_row * (H + Hs) + H,
                            tile_col * (W + Ws): tile_col * (W + Ws) + W
                        ] = this_img * c
            return out_array
    
    # Class that defines the behavior of the RBM
    class RBM(object):
        def __init__(self, input_size, output_size):
            # Defining the hyperparameters
            self._input_size = input_size  # Size of input
            self._output_size = output_size  # Size of output
            self.epochs = 5  # Amount of training iterations
            self.learning_rate = 1.0  # The step used in gradient descent
            self.batchsize = 100  # The size of how much data will be used for training per sub iteration
    
            # Initializing weights and biases as matrices full of zeroes
            self.w = np.zeros([input_size, output_size], np.float32)  # Creates and initializes the weights with 0
            self.hb = np.zeros([output_size], np.float32)  # Creates and initializes the hidden biases with 0
            self.vb = np.zeros([input_size], np.float32)  # Creates and initializes the visible biases with 0
    
        # Fits the result from the weighted visible layer plus the bias into a sigmoid curve
        def prob_h_given_v(self, visible, w, hb):
            # Sigmoid
            return tf.nn.sigmoid(tf.matmul(visible, w) + hb)
    
        # Fits the result from the weighted hidden layer plus the bias into a sigmoid curve
        def prob_v_given_h(self, hidden, w, vb):
            return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)
    
        # Generate the sample probability
        def sample_prob(self, probs):
            return tf.nn.relu(tf.sign(probs - tf.random_uniform(tf.shape(probs))))
    
        # Training method for the model
        def train(self, X):
            # Create the placeholders for our parameters
            _w = tf.placeholder("float", [self._input_size, self._output_size])
            _hb = tf.placeholder("float", [self._output_size])
            _vb = tf.placeholder("float", [self._input_size])
    
            prv_w = np.zeros([self._input_size, self._output_size],
                             np.float32)  # Creates and initializes the weights with 0
            prv_hb = np.zeros([self._output_size], np.float32)  # Creates and initializes the hidden biases with 0
            prv_vb = np.zeros([self._input_size], np.float32)  # Creates and initializes the visible biases with 0
    
            cur_w = np.zeros([self._input_size, self._output_size], np.float32)
            cur_hb = np.zeros([self._output_size], np.float32)
            cur_vb = np.zeros([self._input_size], np.float32)
            v0 = tf.placeholder("float", [None, self._input_size])
    
            # Initialize with sample probabilities
            h0 = self.sample_prob(self.prob_h_given_v(v0, _w, _hb))
            v1 = self.sample_prob(self.prob_v_given_h(h0, _w, _vb))
            h1 = self.prob_h_given_v(v1, _w, _hb)
    
            # Create the Gradients
            positive_grad = tf.matmul(tf.transpose(v0), h0)
            negative_grad = tf.matmul(tf.transpose(v1), h1)
    
            # Update learning rates for the layers
            update_w = _w + self.learning_rate * (positive_grad - negative_grad) / tf.to_float(tf.shape(v0)[0])
            update_vb = _vb + self.learning_rate * tf.reduce_mean(v0 - v1, 0)
            update_hb = _hb + self.learning_rate * tf.reduce_mean(h0 - h1, 0)
    
            # Find the error rate
            err = tf.reduce_mean(tf.square(v0 - v1))
    
            # Training loop
            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                # For each epoch
                for epoch in range(self.epochs):
                    # For each step/batch
                    for start, end in zip(range(0, len(X), self.batchsize), range(self.batchsize, len(X), self.batchsize)):
                        batch = X[start:end]
                        # Update the rates
                        cur_w = sess.run(update_w, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                        cur_hb = sess.run(update_hb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                        cur_vb = sess.run(update_vb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: prv_vb})
                        prv_w = cur_w
                        prv_hb = cur_hb
                        prv_vb = cur_vb
                    error = sess.run(err, feed_dict={v0: X, _w: cur_w, _vb: cur_vb, _hb: cur_hb})
                    print('Epoch: %d' % epoch, 'reconstruction error: %f' % error)
                self.w = prv_w
                self.hb = prv_hb
                self.vb = prv_vb
    
        # Create expected output for our DBN
        def rbm_outpt(self, X):
            input_X = tf.constant(X)
            _w = tf.constant(self.w)
            _hb = tf.constant(self.hb)
            out = tf.nn.sigmoid(tf.matmul(input_X, _w) + _hb)
            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                return sess.run(out)
    
    class NN(object):
    
        def __init__(self, sizes, X, Y):
            # Initialize hyperparameters
            self._sizes = sizes
            self._X = X
            self._Y = Y
            self.w_list = []
            self.b_list = []
            self._learning_rate = 1.0
            self._momentum = 0.0
            self._epoches = 10
            self._batchsize = 100
            input_size = X.shape[1]
    
            # initialization loop
            for size in self._sizes + [Y.shape[1]]:
                # Define upper limit for the uniform distribution range
                max_range = 4 * math.sqrt(6. / (input_size + size))
    
                # Initialize weights through a random uniform distribution
                self.w_list.append(
                    np.random.uniform(-max_range, max_range, [input_size, size]).astype(np.float32))
    
                # Initialize bias as zeroes
                self.b_list.append(np.zeros([size], np.float32))
                input_size = size
    
        # load data from rbm
        def load_from_rbms(self, dbn_sizes, rbm_list):
            # Check if expected sizes are correct
            assert len(dbn_sizes) == len(self._sizes)
    
            for i in range(len(self._sizes)):
                # Check if for each RBN the expected sizes are correct
                assert dbn_sizes[i] == self._sizes[i]
    
            # If everything is correct, bring over the weights and biases
            for i in range(len(self._sizes)):
                self.w_list[i] = rbm_list[i].w
                self.b_list[i] = rbm_list[i].hb
    
        # Training method
        def train(self):
            # Create placeholders for input, weights, biases, output
            _a = [None] * (len(self._sizes) + 2)
            _w = [None] * (len(self._sizes) + 1)
            _b = [None] * (len(self._sizes) + 1)
            _a[0] = tf.placeholder("float", [None, self._X.shape[1]])
            y = tf.placeholder("float", [None, self._Y.shape[1]])
    
            # Define variables and activation functoin
            for i in range(len(self._sizes) + 1):
                _w[i] = tf.Variable(self.w_list[i])
                _b[i] = tf.Variable(self.b_list[i])
            for i in range(1, len(self._sizes) + 2):
                _a[i] = tf.nn.sigmoid(tf.matmul(_a[i - 1], _w[i - 1]) + _b[i - 1])
    
            # Define the cost function
            cost = tf.reduce_mean(tf.square(_a[-1] - y))
    
            # Define the training operation (Momentum Optimizer minimizing the Cost function)
            train_op = tf.train.MomentumOptimizer(
                self._learning_rate, self._momentum).minimize(cost)
    
            # Prediction operation
            predict_op = tf.argmax(_a[-1], 1)
    
            # Training Loop
            with tf.Session() as sess:
                # Initialize Variables
                sess.run(tf.global_variables_initializer())
    
                # For each epoch
                for i in range(self._epoches):
    
                    # For each step
                    for start, end in zip(
                            range(0, len(self._X), self._batchsize), range(self._batchsize, len(self._X), self._batchsize)):
                        # Run the training operation on the input data
                        sess.run(train_op, feed_dict={
                            _a[0]: self._X[start:end], y: self._Y[start:end]})
    
                    for j in range(len(self._sizes) + 1):
                        # Retrieve weights and biases
                        self.w_list[j] = sess.run(_w[j])
                        self.b_list[j] = sess.run(_b[j])
    
                    print("Accuracy rating for epoch " + str(i) + ": " + str(np.mean(np.argmax(self._Y, axis=1) == 
                                                                                     sess.run(predict_op, feed_dict={_a[0]: self._X, y: self._Y}))))
    
    
    if __name__ == '__main__':
        # Loading in the mnist data
        mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
        trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images,
            mnist.test.labels
    
        RBM_hidden_sizes = [500, 200, 50]  # create 4 layers of RBM with size 785-500-200-50
        # Since we are training, set input as training data
        inpX = trX
        # Create list to hold our RBMs
        rbm_list = []
        # Size of inputs is the number of inputs in the training set
        input_size = inpX.shape[1]
    
        # For each RBM we want to generate
        for i, size in enumerate(RBM_hidden_sizes):
            print('RBM: ', i, ' ', input_size, '->', size)
            rbm_list.append(RBM(input_size, size))
            input_size = size
    
        # For each RBM in our list
        for rbm in rbm_list:
            print('New RBM:')
            # Train a new one
            rbm.train(inpX)
            # Return the output layer
            inpX = rbm.rbm_outpt(inpX)
    
        nNet = NN(RBM_hidden_sizes, trX, trY)
        nNet.load_from_rbms(RBM_hidden_sizes, rbm_list)
        nNet.train()

    任何程序错误,以及技术疑问或需要解答的,请扫码添加作者VX::1755337994

  • 相关阅读:
    随笔一
    UISegmentedControl
    adobe as3 samples
    将flash的文字转换为flash可用的矢量图
    让drawRoundRect抗锯齿的最简单的方法
    AS3和FLEX优化技巧
    Spark project 超级强大的AS3库
    API汇集
    一个as3开发人员的话
    好公司职位要求
  • 原文地址:https://www.cnblogs.com/luyanjie/p/14670733.html
Copyright © 2011-2022 走看看