zoukankan      html  css  js  c++  java
  • Codeforces Round #272 (Div. 1) A. Dreamoon and Sums(数论)

    题目链接

    Dreamoon loves summing up something for no reason. One day he obtains two integers a and b occasionally. He wants to calculate the sum of all nice integers. Positive integer x is called nice if  and , where k is some integer number in range[1, a].

    By  we denote the quotient of integer division of x and y. By  we denote the remainder of integer division of x andy. You can read more about these operations here: http://goo.gl/AcsXhT.

    The answer may be large, so please print its remainder modulo 1 000 000 007 (109 + 7). Can you compute it faster than Dreamoon?

    Input

    The single line of the input contains two integers ab (1 ≤ a, b ≤ 107).

    Output

    Print a single integer representing the answer modulo 1 000 000 007 (109 + 7).

    题意 : 给你a,b。让你找出符合以下条件的x,div(x,b)/mod(x,b)=k,其中k所在范围是[1,a],其中mod(x,b)!= 0.然后将所有符合条件的x加和,求最后的结果

    官方题解 :

    If we fix the value of k, and let d = div(x, b), m = mod(x, b), we have :
    d = mk
    x = db + m
    So we have x = mkb + m = (kb + 1) * m.
    And we know m would be in range [0, b - 1] because it's a remainder, so the sum of x of that fixed k would be .
    Next we should notice that if an integer x is nice it can only be nice for a single particular k because a given x uniquely definesdiv(x, b) and mod(x, b).
    Thus the final answer would be sum up for all individual k which can be calculated in O(a) and will pass the time limit of 1.5 seconds.
    Also the formula above can be expanded to 

    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    
    using namespace std ;
    #define mod 1000000007
    
    int main()
    {
        long long a,b ;
        while(~scanf("%I64d %I64d",&a,&b)){
            //    printf("%I64d
    ",a*(a+1)/2) ;
            long long sum = (((a*(a+1)/2%mod)*b%mod+a)%mod*(b*(b-1)/2%mod))%mod ;
            printf("%I64d
    ",sum) ;
        }
        return 0 ;
    }
    View Code
  • 相关阅读:
    CCF_2014_09_2_画图
    计蒜课_等和分隔子集
    计蒜客_合法分数的组合
    读构建之法的读书笔记
    四则运算及感想
    psp 第二周
    第二周 词频统计
    历年作品点评
    四人小组项目
    品读《构建之法》及几个问题的提出
  • 原文地址:https://www.cnblogs.com/luyingfeng/p/4023084.html
Copyright © 2011-2022 走看看